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MODELING INTERESTINGNESS WITH
DEEP NEURAL NETWORKS

BACKGROUND

There are many systems that identify popular content in
the Web or recommend popular content. Such systems are
often based on determining or evaluating factors that include
when, where, and how many users are viewing or interacting
with particular content over some period of time. Similar
issues are addressed by various click prediction systems that
evaluate web usage information in an attempt to compute the
probability that a given document, or an advertisement, in a
search-result page is clicked on after a user enters some
query. Further, the click models used for click prediction are
sometimes personalized to particular users to enable the use
of a user-specific click through rate (CTR).

Information retrieval has been address using various
techniques. For example, Latent Semantic Analysis (LSA)
provides a semantic model designed for various information
retrieval (IR) based tasks. Examples of generative topic
models used for IR include probabilistic LSA, Latent
Dirichlet Allocation (LDA), etc. In addition, some of these
models have been extended to handle cross-lingual cases to
retrieve information from pairs of corresponding documents
in different languages.

Various deep learning techniques have been used to
evaluate training data to discover hidden structures and
associated features at different levels of abstraction for a
variety of tasks. For example, some of these techniques use
deep neural networks or other deep learning techniques to
discover hierarchical semantic structures embedded in que-
ries and documents.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
Further, while certain disadvantages of prior technologies
may be noted or discussed herein, the claimed subject matter
is not intended to be limited to implementations that may
solve or address any or all of the disadvantages of those prior
technologies.

In general, an “Interestingness Modeler,” as described
herein, considers a notion of “interestingness” that repre-
sents a conditional likelihood of a user being interested in
viewing or transitioning to a target document (e.g., images
with captions, text, documents, web pages, spreadsheets,
mixtures of different types of content, etc.) when reading or
viewing a source document in view of a “context” and
optional “focus” of the source and target document. The
Interestingness Modeler provides various techniques for
constructing and using deep neural networks to learn deep
semantic models (DSM) of interestingness. Naturally occur-
ring interest signals for training are obtained by observing
click transitions between source and target documents
derived from web browser logs. The learned DSM is then
used to identify target documents that would likely interest
a user when reading or viewing a source document.

More specifically, interestingness is modeled with deep
neural networks that map source-target document pairs to
feature vectors in a latent space, trained on large numbers of
observed document transitions. Network parameters are
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learned to minimize the distance between source documents
and their corresponding interesting targets in the latent
space. The resulting interestingness model is applicable for
a wide range of uses, including, but not limited to contextual
entity searches, automatic text highlighting, prefetching
documents likely to be of interest to the user, automated
document recommendation, automated advertisement place-
ment, etc.

In various implementations, the Interestingness Modeler
begins operation by receiving a collection of source and
target document pairs. The Interestingness Modeler then
identifies a context for each source document and further
identifies a context for each target document. Each of these
contexts is then mapped to a separate vector. Each vector is
then mapped to a convolutional layer of a deep neural
network or the like. This convolutional layer is in turn
mapped to a plurality of hidden layers of the neural network.
Once these mapping steps have been completed, the Inter-
estingness Modeler generates an interestingness model by
learning weights for each of the multiple transitions between
the layers of the neural network, such that the learned
weights minimize a distance between the vectors of inter-
esting source and target documents.

Further, in various implementations, the Interestingness
Modeler provides an enhanced DSM by further identifying
a focus for each source document and each target document.
Note that the focus represents a different text span in each
document that is likely to have a high degree of relevance.
These identified foci are used in combination with the
contexts of the corresponding source and target documents
to construct the corresponding vectors. In particular, in
implementations where a focus is identified for source and
target documents, both the focus and context of each docu-
ment is mapped to the same corresponding vector for each
document.

In view of the above summary, it is clear that the Inter-
estingness Modeler described herein provides various tech-
niques for constructing and using deep neural networks to
learn a DSM of “interestingness” that is used to identify and
predict target documents that would interest a user when
reading or viewing a source document. In addition to the just
described benefits, other advantages of the Interestingness
Modeler will become apparent from the detailed description
that follows hereinafter when taken in conjunction with the
accompanying drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The specific features, aspects, and advantages of the
claimed subject matter will become better understood with
regard to the following description, appended claims, and
accompanying drawings where:

FIG. 1 provides an exemplary architectural flow diagram
that illustrates program modules of an “Interestingness Mod-
eler” for learning a deep semantic model (DSM) of inter-
estingness, as described herein.

FIG. 2 provides an exemplary architectural flow diagram
that illustrates program modules for using a learned DSM to
construct a boosted ranker for use with arbitrary documents,
as described herein.

FIG. 3 provides an exemplary architectural flow diagram
that illustrates program modules for using a learned boosted
ranker to identify interesting targets relative to an arbitrary
source document being consumed by a user, as described
herein.
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FIG. 4 illustrates an exemplary neural network architec-
ture and information flow of a DSM constructed by the
Interestingness Modeler, as described herein.

FIG. 5 illustrates a general system flow diagram that
illustrates exemplary methods for implementing various
implementations of the Interestingness Modeler, as
described herein.

FIG. 6 is a general system diagram depicting a simplified
general-purpose computing device having simplified com-
puting and I/O capabilities for use in implementing various
implementations of the Interestingness Modeler, as
described herein.

DETAILED DESCRIPTION OF THE
IMPLEMENTATIONS

In the following description of the implementations of the
claimed subject matter, reference is made to the accompa-
nying drawings, which form a part hereof, and in which is
shown by way of illustration specific implementations in
which the claimed subject matter may be practiced. It should
be understood that other implementations may be utilized
and structural changes may be made without departing from
the scope of the presently claimed subject matter.

1.0 Introduction:

In general, an “Interestingness Modeler,” as described
herein, considers a notion of “interestingness” that repre-
sents a conditional likelihood of a user being interested in
viewing or transitioning to a target document (e.g., images
with captions, text, documents, web pages, spreadsheets,
etc.) when reading or viewing a source document in view of
a “context” and optional “focus” of the source and target
documents. The Interestingness Modeler provides various
techniques for constructing and using deep neural networks
to learn deep semantic models (DSM) of “interestingness.”

Naturally occurring interest signals for training are
obtained by observing click transitions between source and
target documents derived from web browser logs. The
learned DSM is then used to identify target documents that
would likely interest a user when reading or viewing a
source document.

More specifically, interestingness is modeled with deep
neural networks that map source-target document pairs to
feature vectors in a latent space. The DSM is trained on large
numbers of naturally occurring interest signals that are
obtained by observing click transitions between source and
target documents derived from web browser logs. Network
parameters of the DSM are learned to minimize the distance
between source documents and their corresponding interest-
ing targets in the latent space.

The resulting interestingness model is applicable for a
wide range of uses, including, but not limited to contextual
entity searches, automatic text highlighting, prefetching
documents likely to be of interest to the user, automated
document recommendation, automated advertisement place-
ment, etc.

For example, consider contextual entity searches. In vari-
ous implementations, when a user highlights a text span
(e.g., word, phrase, sentence, paragraph, etc.) in a document
that represents an entity of interest to her when reading a
document (e.g., a person, location, organization, etc.), the
Interestingness Modeler assists the user by automatically
searching the Web for supplementary information about that
entity that is likely to be if interest to the user. This task is
challenging because the same text span often refers to
different entities, and interesting supplementary information
to the highlighted text span is highly sensitive to the seman-
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tic context. For example, the entity “Paul Simon” can refer
to many people, such as the singer or the U.S. Senator.
Consider an article about the music of the singer Paul Simon
and another about his life. Related content about his upcom-
ing concert tour is likely to be more interesting in the first
context, while an article about his family is likely to be more
interesting in the second.

In contrast to contextual entity searches, where the text
span is highlighted by the user, in various implementations,
the Interestingness Modeler automatically highlights text in
arbitrary content that is likely to be of interest to the user.
More specifically, in various implementations, the Interest-
ingness Modeler automatically discovers concepts, entities
and topics likely to be interest the reader, and then highlights
or otherwise augments (e.g., add hyperlinks, import inter-
esting content, etc.) the corresponding text spans. Similar to
the task of contextual entity searches, document semantics
are considered to determine what is likely to be interesting
to the user. For example, when a user reads an article about
a movie, she is more likely to be interested in browsing or
transitioning to an article about an actor or character in that
movie than to another movie or the director.

When used to enable various prefetching type implemen-
tations, the Interestingness Modeler evaluates the content
being currently consumed by the user to predict what the
user will be interested in next. This allows the Interesting-
ness Modeler to prefetch, download, or otherwise retrieve
corresponding content before the user attempts to access that
content, thus increasing rendering performance for a wide
range of applications, such as a contextual entity search
system. This proactive content selection and prefetching
decision is made without requiring user input, such as
choosing from a set of recommendations or search results,
and allows the user to immediately access content that is
likely to be of interest rather than waiting for document
download after clicking on a hyperlink or the like.

In various implementations, tasks and implementations
such as those summarized above are combined into a unified
framework that makes document reading a more productive
and interactive experience. For example, in various imple-
mentations, the Interestingness Modeler provides a docu-
ment rendering process that pre-highlights for the user what
might be of interest in her current context (e.g., highlight-
ing). She is then free to interact with these highlights or
select any other text span of interest, for which the Inter-
estingness Modeler automatically retrieves interesting
supplementary content (e.g., contextual entity search).
Behind the scenes, the Interestingness Modeler would
prefetch related content for a subset of the predicted inter-
esting content to speed up the rendering and retrieval
process (e.g., document prefetching) in the event that the
user subsequently selects the prefetched content.

1.1 Definitions and General Considerations

The concept of “content” or “documents™” being “con-
sumed” by the user is defined as any content or document
(e.g., images with captions, text, documents, web pages,
spreadsheets, mixtures of different types of content, etc.) that
includes at least some text-based content in any document
that is being read, viewed, or otherwise accessed by the user.
In general, such content is meant in its most general form as
including one or more strings of raw unstructured text. In
other words, the interestingness function (see Equation (1)
below) is not required to rely on any document structure
such as title tags, hyperlinks, XML data, etc., or on Web
interaction data. As such, documents can be formed from the
plain text of a webpage, as a text span in plain text, from the
caption of an image, from text documents, from content
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containing mixtures of text and images or other content such
as audio, etc., as discussed in further detail herein.

The “context” in the source document is defined either as
an anchor (e.g., a hyperlink or the like) or as a selected word
or word string, in combination with a relatively large win-
dow of words around the anchor or selected words. For
example, in a tested implementation, a window size, j,
covering a total of 200 words before and after the anchor or
selected words was used to define the context (e.g., 100
words before and 100 words after). In contrast, the context
in the target document is simply the first k words in the
target, where k can be any desired value. Note that in various
tested implementations, the sizes of j and k were both set to
a value of 200 words, though there is no requirement for
these values to be the same.

The “focus” in the source document is typically a much
smaller portion of text than then context of the document.
For example, the focus is defined as either an anchor (e.g.,
a hyperlink or the like) or a selected word or word string in
a document. In contrast, the focus in the target document is
set to be some relatively small fixed number of words in the
beginning of the target document. For example, in a tested
implementation, the first 10 words in the target document
was set as the focus. However, it should be understood that
a larger or smaller of number of words can be used as the
focus of the target document.

The term “interestingness” is defined herein as a com-
puted score or statistical measure relating to the likelihood
that the user will be interested in pursuing, consuming, or
transitioning to a different document or content, in view of
an arbitrary document or other content currently being
consumed by the user. In other words, as noted above, the
notion of interestingness represents the conditional likeli-
hood of a user being interested in viewing or transitioning to
a target document when reading an arbitrary source docu-
ment in view of the context and optional focus of the source
document relative to the target documents.

In general, this notion of interestingness is modeled with
a computational deep semantic model. The model is seman-
tic because it maps word representations of documents to
feature vectors in a latent semantic space (also known as the
semantic representation). The model is deep because it
employs a deep neural network to extract hidden semantic
features at different levels of abstractions, layer by layer. The
semantic representation is computed through the several
layers of the neural network after its training by methods
including, but not limited to, backpropagation or other
supervised learning techniques with respect to an objective
tailored to the respective interestingness tasks.

In other words, interestingness is modeled with a deep
neural network that maps source-target document pairs to
feature vectors in latent semantic space, and is trained using
observed browsing transitions between documents. In vari-
ous implementations, training data including, but not limited
to, naturally occurring interest signals is sampled from Web
usage logs that are evaluated to extract Web browser tran-
sition pairs between source documents and target docu-
ments.

In particular, let D be the set of all documents. Then, the
interestingness modeling task is formally defined as learning
the mapping function:

o(s,8):DxD— R+ Equation (1)

where the function o(s,t) is the quantified degree of interest
that the user has in the target document t€D after or while
reading the source document s€D.
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The training data used to learn the DSM can be obtained
by observing any of a wide variety of naturally occurring
signals or manifestations of interestingness on the Web. For
example, on Twitter®, users often follow shared links
embedded in tweets, and in Web search, users search for
their interests on a search engine.

One of the most frequent signals of interestingness occurs
in Web browsing events where users click from one web-
page to another via hyperlinks. When a user clicks on a
hyperlink, it is reasonable to assume that she is interested in
learning more about the anchor, modulo cases of erroneous
clicks. Aggregate clicks can therefore serve as a proxy for
interestingness. That is, for a given source document s, target
documents t that attract the most clicks are likely to be more
interesting than documents that attract fewer clicks. More
formally, a gold standard interestingness function, o', can be
stated as:

o'(s,5)=p(tls) Equation (2)

where p(tls) is the probability of a user clicking through to
a target document t when viewing a source document s.

It should be understood that although the click signal is
available to form a dataset and gold standard function, the
Interestingness Modeler uses this information to model
interestingness between arbitrary unstructured documents,
for which prior click data may not be available. In other
words, once the Interestingness Modeler has learned the
DSM, the DSM is applicable to arbitrary documents regard-
less of whether there is any document structure (e.g., tags,
titles, table of contents, hyperlinks, metadata, etc.) or Web
interaction data for those arbitrary documents. Conse-
quently, the interestingness models, o, developed by the
Interestingness Modeler are implemented without requiring
the use of any document structural information or metadata.

As discussed in further detail herein, in various imple-
mentations, the Interestingness Modeler collects a large
dataset of user browsing events from browser logs. For
example, in a tested implementation, training data was
sampled from millions of occurrences of user clicks from
one Wikipedia® page to another that were collected during
a one-year period. Note that Wikipedia® page browsing
events were used for training purposes since these pages
tend to contain many anchors (i.e., 79 on average, among
which 42 have a unique target URL). However, it should be
understood that any set of page transition data can be used
for training purposes and that the DSM learned by the
Interestingness Modeler is not intended to be limited to the
use of training data derived from Wikipedia® pages. Fur-
ther, once trained, the resulting DSM is applicable to mod-
eling interestingness in arbitrary content regardless of the
source of those pages or documents.

Note that some pages contain multiple anchors that point
to the same target document (i.e., common links). Conse-
quently, in various implementations, when joining content to
transitions for a source page with multiple common links to
a particular target, it is assumed that the first of these
common links was clicked (i.e., that the click originated
from the first anchor). However, other assumptions can be
made with respect to which of these common links was
clicked in the transition from a source to a target document.

1.2 System Overview

As noted above, the Interestingness Modeler provides
various techniques for constructing and using deep neural
networks to learn a DSM of interestingness that is used to
identify and predict target documents that would interest a
user when reading or viewing a source document. The
processes summarized above are illustrated by the general
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system diagrams of FIG. 1, FIG. 2 and FIG. 3. In particular,
these system diagrams illustrate various interrelationships
between program modules for implementing various imple-
mentations of the Interestingness Modeler, as described
herein. Furthermore, while these system diagrams illustrate
high-level views of various implementations of the Interest-
ingness Modeler, FIG. 1, FIG. 2 and FIG. 3, either alone or
in combination, are not intended to provide an exhaustive or
complete illustration of every possible implementation of
the Interestingness Modeler as described throughout this
document.

In addition, it should be noted that any boxes and inter-
connections between boxes that may be represented by
broken or dashed lines in FIG. 1, FIG. 2, or FIG. 3 represent
alternate implementations of the Interestingness Modeler
described herein. Further, any or all of these alternate
implementations, as described below, may be used in com-
bination with other alternate implementations that are
described throughout this document.

In general, as illustrated by FIG. 1, the processes enabled
by the Interestingness Modeler for learning the aforemen-
tioned DSM begin operation by using Pair Extraction Mod-
ule 100 to evaluate browser logs 110 to identify a set of
source and target document pairs 120 (i.e., (s,t) pairs). A
Context and Focus Extraction Module 130 then evaluates
the set of source and target document pairs 120 to extract a
context and optional focus from the (s,t) pairs based on data
such as observed hyperlinks, entity extraction processes, etc.

A DSM Training Module 140 then map context and
optional focus of each document to separate vectors. This is
done through a neural network, i.e., the context and optional
focus are first fed into the input layer of the neural network,
then through multiple layer of non-linear transformation
(i.e., the neural network), the neuron activation values at the
nodes of the last layer of the neural network form the output
vector. In turn, these vectors are mapped to a neural network
architecture of the DSM. The Interestingness Modeler then
learns weights for transitions between network layers to
minimize the distance between vectors of interesting source
and target documents. Finally, the DSM Training Module
140 provides the trained neural network as a learned deep
semantic model (DSM) of interestingness 150 to compute
the similarity of interesting documents using the vectors.
Note that the neural network for source and target document
could be the same or different ones.

As illustrated by FIG. 2, in various implementations, the
learned DSM 150 of interestingness is then passed to a
Feature Extraction Module 200 that generates feature vec-
tors 210 from the output layer of the DSM for source and
target documents. As discussed in further detail herein, a
Ranker Construction Module 220 then uses the feature
vectors from output layer of the DSM to learn a boosted tree
ranker 230 or other model. This boosted tree ranker 230 is
then made available for any of a number of interestingness-
based tasks.

For example, as illustrated by FIG. 3, in various imple-
mentations, an Entity Extraction Module 300 uses any of a
variety of named entity recognizer-based techniques to
extract entities (e.g., links, people, places, things, etc.) from
an arbitrary source document 310 being consumed by the
user to identify context and/or focus 330 in that arbitrary
source document. Alternately, or in combination, the Inter-
estingness Modeler identifies text highlighted by the via a
User Interface Module 320 user as the focus of the arbitrary
source document 310. In general, the User Interface Module
320 is used to select words, word strings, hyperlinks, enti-
ties, etc., in the arbitrary source document 310.
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In either case, once the Entity Extraction Module 300 has
identified or extracted the context and/or focus 330 of the
arbitrary source document 310, this information is provided
to a Search Engine Module 340. The search engine module
then uses any conventional search engine or techniques to
service the context and/or focus 330 as query inputs to the
search engine or the like. The search engine then searches
the Web, database, or other information source to return
relevant documents.

The Search Engine Module 340 then retains the top-k
ranked search results as a candidate set 350 of potentially
interesting target documents. An Interesting Target Output
Module 360 then processes the candidate set 350 using the
previously learned boosted tree ranker 230 to rank and select
one or more target documents relative to the arbitrary source
document 310 being consumed by the user. As discussed
herein examples uses of interesting target documents
include, but are not limited to, contextual entity search,
automatic highlighting, document prefetching, document or
item recommendation, advertisement placement, etc.

2.0 Operational Details of the Interestingness Modeler:

The above-described program modules are employed for
implementing various implementations of the Interesting-
ness Modeler. As summarized above, the Interestingness
Modeler provides various techniques for constructing and
using deep neural networks to learn a DSM of “interesting-
ness” that is used to identity and predict target documents
that would interest a user when reading or viewing a source
document. The following sections provide a detailed dis-
cussion of the operation of various implementations of the
Interestingness Modeler, and of exemplary methods for
implementing the program modules described in Section 1
with respect to FIG. 1. In particular, the following sections
provides examples and operational details of various imple-
mentations of the Interestingness Modeler, including:

An operational overview of the Interestingness Modeler;

A deep semantic model (DSM) of Interestingness;

An exemplary loss function for learning the DSM;

Training the DSM;

Using the DSM; and

Additional Implementations and considerations.

2.1 Operational Overview:

As noted above, the processes described herein provide
various techniques for constructing and using deep neural
networks to learn a DSM of “interestingness™ that is used to
identify and predict target documents that would interest a
user when reading or viewing a source document. Interest-
ingness is modeled with deep neural networks that map
source-target document pairs to feature vectors in a latent
space, trained on large numbers of document transitions in
view of a “context” and optional “focus” of the source and
target documents. Neural network parameters are learned to
minimize the distance between source documents and their
corresponding “interesting” targets in that space. The result-
ing interestingness model is applicable uses, including, but
not limited to, contextual entity searches, automatic text
highlighting, prefetching documents likely to be of interest,
automated content recommendation, automated advertise-
ment placement, etc.

2.2 A Deep Semantic Model (DSM) of Interestingness:

The Interestingness Modeler provides a DSM derived
from a deep neural network with convolutional structure that
is highly effective for speech and image tasks. One example
of the neural network architecture used to learn the DSM is
shown in FIG. 4, as discussed in detail below. Note that the
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following discussion uses lower-case bold letters, such as x,
to denote column vectors, and upper-case letters, such as W,
to denote matrices.

Note that the model can be trained (and used) without a
particular “focus” by considering the larger “context” of
documents. In such cases, rather than use a particular
selection or hyperlink as the focus (as defined above), the
larger context (as defined above) is used in place of the
focus. Consequently, while the following discussion refers
to the use of a focus for model training, that discussion
applies equally to the use of the larger document context for
model training by simply substituting the context for the
focus. Further, once learned, the resulting DSM can be used
with or without a particular focus by considering either or
both the context and focus of the documents being con-
sumed by the user. However, model performance has been
observed to improve with the use of both a context and focus
for DSM training and use.

2.2.1 Input Layer x:

A document d, which is a sequence of words, is converted
into a vector representation x for the input layer of the
network. The Interestingness Modeler is capable of adapting
techniques, including, but not limited to, bag-of-words
based methods for such purposes. However, these types of
methods generally result in sparse vectors having a rela-
tively high dimensionality (due to the large vocabularies in
many Web applications). This makes the neural network
training computationally expensive. Further, some useful
contextual information, such as word order and inter-word
dependencies, are not preserved with bag-of-words based
method and similar techniques.

Consequently, in various implementations, the Interest-
ingness Modeler provides vector-based techniques that both
increase the density (i.e., reduces the sparsity) of the vector
(thus reducing computational overhead for neural network
training) and preserves document contextual information
(thus improving DSM model performance). In particular, in
various implementations, the Interestingness Modeler
implements a two stage approach to build document vectors
of the input layer x:

(1) Convert each word in document d (having a total of Id'

words) to a word vector; and

(2) Build the input layer x from these word vectors.

To convert a word w into a word vector, the Interesting-
ness Modeler first represents each word w in document d by
a one-hot vector (or the equivalent) using a vocabulary
containing N high-frequency words. Note that in a tested
English language based implementation of the Interesting-
ness Modeler, a value of N=150K words was used, with N
representing the 150K most common words or character
sequences in the English language and in the training corpus.
Such character sequences may also include misspelled
words. Note that with a one-hot vector, a vector of length
150K will have a single non-zero entry corresponding to a
particular word in the document. A predefined lookup table
or the like of the high-frequency words is used to construct
the one-hot vector for each word. Clearly, other languages,
dialects, or word sets, may use different numbers or sets of
high-frequency words for training purposes.

Next, the Interestingness Modeler also maps each word w
to a separate tri-letter vector. For example, consider the word
“#dog#”, where # is a word boundary symbol (e.g., space,
period, exclamation, etc.). As such, the nonzero elements in
the tri-letter vector of “#dog#” are “#do”, “dog”, and “og#”.
Note that smaller or larger letter vectors may be used for
training (e.g., dual-letter vectors, quad-letter vectors, etc.).
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However, tri-letter vectors were observed to provide accept-
able results in the DSM that resulted from training of the
neural network. In a tested implementation, the Interesting-
ness Modeler restricted the use of tri-letters to the most
frequent 30K tri-letters (i.e., a vector of length 30K with
separate non-zero entries for each tri-letter of the word w)
though more or fewer can be used. A predefined lookup table
or the like of the allowable tri-letters is then used to
construct the tri-letter vector for each word.

The Interestingness Modeler then forms the word vector
of w for each word by concatenating its one-hot vector and
its tri-letter vector. It should be noted that that the tri-letter
vector complements the one-hot vector representation in two
aspects. First, different out of vocabulary (OOV) words (i.e.,
one-hot vector will have all zero entries) will still be
represented by tri-letter vectors with few collisions. Second,
spelling variations (also including incorrect spellings) of the
same word will inherently be mapped to points that are close
to each other in the tri-letter space. Further, although the
number of unique English words on the Web is extremely
large, the total number of distinct tri-letters in English is
relatively limited. As a result, incorporating tri-letter vectors
into the one-hot vectors substantially improves the repre-
sentation power of word vectors while keeping their size
relatively small.

Then, to form the neural network input layer x using the
word vectors, the Interestingness Modeler first identifies a
text span in the document d with a high degree of relevance
using task-specific heuristics (see Section 2.4). This text
span is referred to herein as the “focus” of document d. For
example, in the contextual entity search task, the focus in an
arbitrary source document is some text span highlighted by
a user. Note that such highlighting can be performed manu-
ally such as user selection via some pointing device, voice
command, etc., or can be performed by automatically track-
ing the user’s eyes to identify a text span being viewed by
the user. In contrast, the focus of arbitrary target documents
was set to some fixed number, I, of words at the beginning
of the target document. For example, in a tested implemen-
tation, I was set to be the first 10 words of the document,
though any desired number of words can be used for this
purpose.

Finally, the neural network input layer x is formed by
concatenating each word vector in the focus and a separate
vector that is the summation of all the other word vectors in
the document not in the focus. Note that the neural network
diagram of FIG. 4 illustrates the word sequence (410) of
document d being used to construct corresponding separate
vectors of the input layer (420) by separately passing each
word of the document focus through word and tri-letter
lookup tables (430). Similarly, the words in the remainder of
the document (i.e., the words outside of the focus) are used
to construct a single vector, as noted above. Note that the
length of the focus (i.e., number of words) of the source
document is typically much smaller than the total length of
the source document (unless the user highlights most or all
of the document). Consequently, the input layer x is able to
capture the contextual information (for the words in the
focus) useful to the corresponding tasks, with a manageable
vector size. Note that the additional layers of the neural
network illustrated in FIG. 4 are discussed in further detail
below.

2.2.2 Convolutional Layer u:

As illustrated in FIG. 4, a convolutional layer u (440) of
the neural network extracts local features around each word
w, in a word sequence (i.e., the focus in d) of length I as
follows. In constructing the convolutional layer u (440),



US 9,846,836 B2

11

thelnterestingness Modeler first generates a contextual vec-
tor c,by concatenating each word vector of w, and its
immediately surrounding words defined by a small window
(e.g., a window size of 3 was used in a tested implementa-
tion, however, any desired window size can be used). Then,
for the contextual vector ¢, of each word in the focus, the
Interestingness Modeler generates a local feature vector u,
using a tan h activation function and a linear projection
matrix W, (450), which is the same across all windows i in
the word sequence, as:

u~tan h(W,1c,), where i=1, ... I Equation (3)

Note that as illustrated by FIG. 4, the exemplary neural
network shows the use of 300 dimensions in a semantic
space of the documents (i.e., K=300 semantic features or
topics). However, it should be understood that the use of 300
dimensions is a simple design choice used for testing
purposes and that any number of semantic features or topics
can be used here. This dimensionality follows through to
each of the subsequent layers of the neural network (as
illustrated by the use of 300 dimensions in each layer),
though networks having different dimensionality at each
layer can be implemented, if desired.

Note that increasing the number of dimensions will typi-
cally increase model complexity, resulting in longer training
times. However, since model training is performed offline,
with the resulting DSM being provided for use by individual
users, search systems, recommendation systems, advertise-
ment placement systems, etc., the computational overhead in
model training is not of significant concern.

2.2.3 Max-Pooling Layer v:

As illustrated in FIG. 4, the neural network includes a
max-pooling layer v (460). The design of the max-pooling
layer in deep neural networks with convolutional structure
directly affects the performance for speech and image tasks.
In general, the size of the convolutional layer u (440)
depends on the number of words in the word sequence that
forms the focus. Local feature vectors are combined to
obtain a global feature vector represented by max-pooling
layer v (460), with a fixed size independent of the focus
length, in order to apply subsequent standard affine layers.
The max-pooling layer v (460) is designed by adopting a
max pooling operation (470) over each “time” i of the
sequence of vectors computed by Equation (3), which forces
the network to retain only the most useful, partially invari-
ant, local features produced by the convolutional layer u
(440), as illustrated by Equation (4):

v = maX u;
=1, ... ,I{ i}

i

Equation (4)

2.2.4 Fully-Connected Layers h and y:

The fixed sized global feature vector representing the
max-pooling layer v (460) of Equation (4) is then fed to
several additional affine network layers, which are stacked
and interleaved with nonlinear activation functions, to
extract highly non-linear features at the output layer y (480).
In the neural network model illustrated by FIG. 4, a hidden
layer h (485) is provided by Equation (5), and the output
layer y (480) is provided by Equation (6), as follows:

h=tan k(W) Equation (5)

y=tan h(W>Th) Equation (6)
where W, and W, are machine-learned linear projection

matrices (490 and 495, respectively). Also note that, the
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above paragraphs provide a description of the neural net-
work used in the DSM. In practice, the neural networks for
source document and target document could be different
ones, as long as the sizes of the final (output) layers of the
two neural networks are the same (as required by equation
@)

2.3 Exemplary Loss Function for Learning the DSM:

The following paragraphs describe various ways in which
the Interestingness Modeler automatically learns parameters
of the DSM of FIG. 4, i.e., ways in which 6={W_ W, W,}
are learned. Note that this assumes that the source document
and the target document share the same neural network.
Otherwise, there are two sets of 0, one for source document
and one for the target document. Further, it should be noted
that additional layers can be added to the DSM without
departing from the intended scope of the Interestingness
Modeler. In various implementations, the design of the loss
function used by the Interestingness Modeler is based on a
pairwise learning-to-rank paradigm, although other loss
function designs can be adapted for use by the Interesting-
ness Modeler.

For example, consider a source document s and two
candidate target documents t, and t,, where t; is more
interesting than t, to a user when reading s. The Interest-
ingness Modeler constructs two pairs of documents (s, t,)
and (s, t,), where the former is preferred and typically has a
higher interestingness score. Let A be the difference of their
interestingness scores, following Equation 1. Namely:

A=0(s,1,)-0(s,15) Equation (7)

where o is defined as the cosine similarity:

yfy, Equation (8)

7L 1) = stmals. 1) = 1 T
£} t

where y, and y, are the feature vectors of s and t, respec-
tively, which are generated using the DSM, parameterized
by 0. Intuitively, the idea is to learn 0 to maximize A. That
is, the DSM is learned to represent documents as points in
a hidden interestingness space, where the similarity between
a document and its corresponding interesting documents is
maximized.

In various implementations, the Interestingness Modeler
uses the following logistic loss over A, which can be shown
to upper bound the pairwise accuracy, although should be
understood that other loss functions can be used to imple-
ment the training process described herein without departing
from the scope of the Interestingness Modeler:

L (A;0)=log(1+exp(—yA)) Equation (9)

The loss function in Equation (9) has a shape similar to a
hinge loss used in support vector machines (SVMs). How-
ever, because of the use of the cosine similarity function, a
scaling factor v is added that magnifies A from [-2, 2] to a
larger range. Empirically, the value of y makes no difference
as long as it is large enough. In various tested implementa-
tions, the value of y is set as y=10, though other values can
clearly be used for y. Because the loss function is differen-
tiable, optimizing the model parameters can be done using
any of a variety of gradient-based methods, such as L-BFGS
(i.e., limited-memory Broyden-Fletcher-Goldfarb-Shanno),
Stochastic Gradient Descent (SGD), etc.

2.4 Training the DSM:

In various tested implementations, deep semantic models
were trained on a training corpus such as the data sets
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described above (e.g., Wikipedia® page browsing events or
the like), using mini-batch Stochastic Gradient Descent
(SGD), although it should be understood that other machine
learning techniques can be used for this training process. In
various implementations, mini-batch size was set to 256
source-target document pairs, although it should be under-
stood that mini-batch size can be set to any desired number
of source-target document pairs for training purposes.

For each source document s, the Interestingness Modeler
randomly selects from that batch four target documents
which are not paired with s as negative training samples,
although more or fewer negative training examples can be
used for this purpose. Therefore, each mini-batch contains
256x5 training samples (e.g., one paired target and four
negative examples).

Unless otherwise stated, the deep semantic model used in
the tested implementations discussed below follows the
architecture illustrated in FIG. 4. However, it should be
understood that the optimal architecture can vary depending
on the task for which the DSM is being trained (e.g.,
contextual entity searches, automatic text highlighting,
prefetching documents, etc.). Consequently, in various
implementations, the Interestingness Modeler searches for
the optimal model architecture for every specific task, result-
ing in task-specific DSMs that are optimally trained for
particular tasks. However, the architecture illustrated in FIG.
4 provides a fixed architecture that has been observed to
provide acceptable results all task types tested.

Given that the optimization problem is not convex, proper
initialization is expected to reduce the training time and to
make the learning converge to a more accurate local opti-
mum. In various tested implementations, the network
weights were initialized with uniform distribution in a range
between -V 6/(fanin+fanout) and v6/(fanin+fanout), where
“fanin” and “fanout” are the numbers of input and output
nodes, respectively. However, it should be understood that
network weights can be initialized using any desired weight-
ing process without departing from the intended scope of the
Interestingness Modeler.

In principle, the loss function of Equation (9) can be
further regularized (e.g., by adding a term of L., norm) to
deal with overfitting. However, results obtained from DSMs
trained using a simpler early stop approach were observed to
be approximately equivalent to results obtained through
further regularization of the loss function. The early stop
approach adjusts the learning rate v during the course of
model training. For example, assuming an initial value of
n=L1.0, after each epoch (i.e., a pass over the entire training
data), the learning rate is adjusted as =0.5x1 (or any other
desired weight) if the loss on validation data is not reduced.
The training stops if either 1 is smaller than a preset
threshold or the loss on training data can no longer be
reduced significantly. In various tested implementations, it
was observed that DSM training typically converges within
about 20 epochs.

As noted above, the Interestingness Modeler is applicable
for a wide range of tasks, including, but not limited to
contextual entity search, automatic highlighting, document
prefetching, document or item recommendation systems,
advertisement placement systems, etc. The following dis-
cussion describes how the source and target documents may
be represented for training, and how the focus is determined.
As discussed above, it is assumed that there is no document
structure other than plain text, although when such infor-
mation exists, it can be used in model training, if desired. In
various tested implementations, document structural infor-
mation (e.g., hyperlinks, XML tags, etc.) was removed from
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the documents, and those documents were then each con-
verted into plain text, which is white-space tokenized and
lowercased (although other plain text formats may also be
used). Numbers are retained and no stemming is performed.
In view of this plain-text format, the following paragraphs
described task-specific training for exemplary usage sce-
narios.

2.4.1 Training the DSM for Contextual Entity Searches:

In various tested implementations, when training the
DSM for contextual entity searches, the context of a source
document s consists of the highlighted text span and its
surrounding text defined by a 200-word window (or other
size window) covering text before and after the highlighted
text. Note that in the event that the highlighted text span is
at the beginning or end of a document, the window size may
be reduced depending on the amount of text, if any, preced-
ing or following the highlighted span. The focus in s is the
highlighted text span. A target document t consists of the
plain text of a webpage. The focus in t is defined as the first
10 tokens or words in t, although as discussed above, the
focus can be larger or smaller, and need not be limited to the
first words in the document.

2.4.2 Training the DSM for Automatic Highlighting and
Prefetching:

In various tested implementations, when training the
DSM both automatic highlighting and prefetching tasks,
these tasks were simulated as follows. Specifically, all
candidate concepts, entities and topics that may interest the
reader of a document are drawn from the set of anchors in
that document. For each document-anchor pair, a source-
target pair (s,t) is represented as follows. The source docu-
ment s is the plain text of the document that the user is
reading. The focus in s is the anchor text. The target
document t is represented as the plain text of the document
linked to the anchor. The focus in t is defined as the first 10
tokens or words in t, although the focus can be larger or
smaller, and need not be limited to the first words in the
document.

2.5 Using the DSM:

In various tested implementations, the DSM was used in
various ways to enable the three above-described interest-
ingness tasks: (1) as a feature generator; and (2) as a direct
implementation of the interestingness function o.

With respect to feature generation, the output layer of the
DSM can be seen as a set of semantic features, which can be
incorporated in models trained discriminatively on the task-
specific data. Given a source-target document pair (s,t), the
DSM generates 600 features (i.e., 300 from the output layers
y, and y, for each s and t, respectively). However, as
discussed above in Section 2.2.2, it should be understood
that the use 0o 300 dimensions is a simple design choice used
for testing purposes and that any number of dimensions can
be used.

With respect to direct implementation of the interesting-
ness function 6, as discussed above, the interestingness score
for a document pair is measured using the cosine similarity
between their corresponding feature vectors (y, and y,).
Similarly at runtime, o=simg(s.t) is defined as Equation (8).
However, it should be understood that the resulting feature
vectors may be mapped into a variety of spaces with any of
a variety of distance or similarity measures then being
applied to the resulting feature vectors to compute interest-
ingness scores.

2.5.1 Using the Trained DSM for Contextual Entity
Searches:

In this task, a user highlights a text span representing an
entity in a document that she is interested in learning more
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about, and relevant content is retrieved. To map the task to
the interestingness function o of Equation (1), the Interest-
ingness Modeler represents the source and target documents
as described above. Given the highlighted text span, the
Interestingness Modeler retrieves a candidate set of target
documents from the Web, or any other document store or
database, by issuing the highlighted text as a query to a
search engine or the like. The Interestingness Modeler then
uses the trained DSM to automatically select k target docu-
ments from the candidate set that are maximally interesting
to the user.

As noted above, the DSM is used to accomplish this task
in two different settings, including as a direct implementa-
tion of o (single model) and as a feature generator for a
learning a discriminative model (e.g., a learned ranker). For
the ranker implementation of o(s,t), the Interestingness
Modeler uses a boosted decision tree, which incorporates a
large number of ranking features, as discussed in further
detail below, along with the DSM features.

For example, in a tested implementation, a data set was
generated by randomly sampling a document set from a
traffic-weighted set of Web documents. The Interestingness
Modeler then used existing named entity recognizer-based
techniques to extract entities (e.g., links, people, places,
things, etc.) from the documents. Each entity name was then
issued as a query to a search engine, and the top-100
retrieved documents were retained as candidate target docu-
ments (though any desired number can be retained for
training purposes).

Next, for each entity name, the Interestingness Modeler
generated a list of source-target document pairs using the
techniques described above in Section 2.4.1, one for each
target document. The resulting data set contained 10,000
source documents (though there is no significance to this
number, and any number of source documents can be used).
For the particular set of source documents considered in
various tested implementations, each source document is
associated with an average of 87 target documents (again,
there is no particular significance to this number). Finally,
the source-target document pairs were manually labeled in
terms of interestingness and used to train a boosted ranker
model (though this same information can be used to train
any of a variety of discriminative models. For purposes of
explanation, assume that these labels were on a 5-level scale,
0 to 4, with 4 meaning the target document is the most
interesting to the source document and 0 meaning the target
is of no interest, although any desired scale can be used for
this purpose.

The resulting models were then used to implement vari-
ous applications, including, but not limited to a ranking
application where k interesting documents are displayed or
presented to the user, and an application where all interesting
documents are presented to the user. For example, in the case
of the top-k ranked documents, these top-k documents (or
links to these documents) are presented to user sorted
according to their interestingness scores. In the case where
all documents are presented to the user, all target documents
with an interestingness score exceeding a predefined (or user
adjustable) threshold.

Various existing ranking techniques, such as bilingual
topic models (BLTM), for example, use a generative model
where semantic representation is a distribution of hidden
semantic topics that is learned using Maximum Likelihood
Estimation in an unsupervised manner, i.e., maximizing the
log-likelihood of the source-target document pairs in the
training data. In contrast, the DSM learned by the Interest-
ingness Modeler represents documents as points in a hidden
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semantic space using a supervised learning method, i.e.,
paired documents are closer in that latent space than
unpaired ones. In other words, the model parameters of the
DSM are discriminatively trained using an objective that is
tailored to particular interestingness tasks, as noted above.

In addition to the difference in training methods, DSM
and techniques such as BLTM also use different model
structures. For example, BLTM treats a document as a bag
of words (thus losing some contextual information such as
word order and inter-word dependencies), and generates
semantic representations of documents using linear projec-
tion. DSM, on the other hand, treats text as a sequence of
words in order to capture both local and global context, and
to generate highly non-linear semantic features via a deep
neural network.

In the ranker setting, the interestingness function a used
by the Interestingness Modeler is defined as a boosted tree
ranker, which uses a large number of features extracted from
(s,t). In various implementations, the ranker was trained
using the labeled data set described above. As summarized
above, this data set contained 10,000 source documents,
each with 87 target documents on average. The parameters
of the ranker are trained to optimize directly a normalized
discounted cumulative gain (NDCG) score computed on the
training data. Rounds of boosting are performed, and at each
iteration, a regression tree is constructed using all pairs in
the training data. The final number of trees is then chosen
based on the validation data.

While the resulting ranker, used as a single model, has
been observed to be quite effective, integrating the DSM
score computed in Equation (8) as one single feature into the
ranker leads to a significant improvement over this single
model baseline. Additional improvements in DSM perfor-
mance were obtained by incorporating the DSM feature
vectors of source and target documents (i.e., 600 features in
total, assuming the use K=300 semantic features or topics
for both the source and target documents) in the ranker.

2.5.2 Using the Trained DSM for Highlighting and
Prefetching Tasks:

For the highlighting task, applications enabled by the
Interestingness Modeler select the k most interesting text
spans in a source document. Similarly, in the prefetching
task, applications enabled by the Interestingness Modeler
prefetch up to k documents such that the next user click is
likely to be one of the cached documents. In various
implementations, the Interestingness Modeler casts and
implement both of these tasks via the same interestingness
model, though with different purposes

Both of these tasks can be trained on the type of data sets
of source and target documents described above (e.g., Wiki-
pedia® page transitions or other data sets). Given the data
set (or multiple training data sets), the Interestingness Mod-
eler uses the set of anchors in each source document s to
simulate the set of candidate things that may be of interest
to the user while reading s. Further, the Interestingness
Modeler treats the text of a document that is linked by an
anchor in the source document s as a target document t.

The Interestingness Modeler casts the tasks of highlight-
ing and prefetching as selecting the k anchors that maximize
an aggregate cumulative degree of interest in all documents
linked to by the anchors. Note that in a tested implementa-
tion, when a click is recorded, that click is mapped to the first
occurring anchor that links to the clicked page. However,
there is no requirement for mapping to the first anchor, and
any anchor, or multiple anchors, can be used for mapping

purposes.
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Thus, assuming mapping to the first anchor, this can be
formally stated as follows. Let A be the set of all anchors in
s and let t, be the target document linked to by anchor acA .
The Interestingness Modeler then selects the k anchors in A
that maximize the cumulative interest, according to:

argmax Z (s, 1) Equation (10)

=@y, ....q I € A e ak

where o(s,t,)=0 for all agA_.

Features used for training can be categorized as either
non-semantic or semantic. Non-semantic features (NSF) are
derived from the source document s and from user session
information in the browser log. Non-semantic document
features include, but are not limited to, position of the anchor
in the document, frequency of the anchor, and anchor
density in the paragraph. Non-semantic user session features
include, but are not limited to, city, country, postal code,
region, state and time zone of the user, as well as day of
week, hour, weekend vs. workday of the occurrence of the
transition, user age, user gender, user education, user
income, etc. Some or all of these non-semantic features may
or may not be available from the browser logs or user profile
information. In contrast, semantic features are computed
from source and target documents of each browsing transi-
tion. In various tested implementations of the Interesting-
ness Modeler semantic features were obtained either from
the full DSM or a version of the DSM purged of its
convolutional layer u and max-pooling layer v), both using
the output layers as feature generators as described above in
Section 2.5.

To train the DSM to for the above-described tasks, the
Interestingness Modeler selects anchors in the training set
various ways. For example in various implementations, the
Interestingness Modeler selects k random anchors (RAND).
In other implementations, the Interestingness Modeler
selects the first k anchors in each document. In further
implementations, the Interestingness Modeler selects the last
k anchors in each document. Clearly, other anchor selection
scenarios can be used without departing from the intended
scope of the Interestingness Modeler.

Note that although the above-described task setting allows
access to the content of both source and target documents,
there are practical scenarios where a system can predict what
interests the user without looking at the target document
because the extra step of identifying a suitable target docu-
ment for each candidate concept, topic or entity of interest
is prohibitively inefficient. Such scenarios are also enabled
by the Interestingness Modeler. Note also that in cases where
features are only drawn from the source document, it has
been observed that the use of semantic features significantly
boosts the performance of the DSM relative to NSF alone.
However improved performance is obtained by using fea-
tures from both source and target documents.

2.6 Additional Implementations and Considerations:

In various implementations, the DSM learned by the
Interestingness Modeler is further improved by extending
the process for modeling interestingness given an entire user
session, which consists of a sequence of browsing events. In
particular, the prior browsing and interaction history
recorded in the session provides additional signals for pre-
dicting interestingness. To capture such signals, the model is
extended to model time series (e.g., causal relations and
consequences of actions). A variety of models can be used
for such purposes. For example, architecture based on
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recurrent neural networks can be incorporated into the deep
semantic model described herein to model user sessions.

3.0 Operational Summary of the Interestingness Modeler:

Some of processes described above with respect to FIG.
1 through FIG. 4, and in further view of the detailed
description provided above in Sections 1 and 2, are illus-
trated by the general operational flow diagram of FIG. 5. In
particular, FIG. 5 provides an exemplary operational flow
diagram that summarizes the operation of some of the
various implementations of the Interestingness Modeler.
Note that FIG. 5 is not intended to be an exhaustive
representation of all of the various implementations of the
Interestingness Modeler described herein, and that the
implementations represented in FIG. 5 are provided only for
purposes of explanation.

Further, it should be noted that any boxes and intercon-
nections between boxes that may be represented by broken
or dashed lines in FIG. 5 represent optional or alternate
implementations of the Interestingness Modeler described
herein. In addition, any or all of these optional or alternate
implementations, as described below, may be used in com-
bination with other alternate implementations that are
described throughout this document.

In general, as illustrated by FIG. 5, the Interestingness
Modeler begins creation of the DSM by receiving (500) a
collection or set of source and document pairs 120. The
Interestingness Modeler then identifies (510) a separate
context for each source document and each target document
in the set of source and target document pairs 120. In
addition, the Interestingness Modeler optionally identifies a
separate focus for each source document and each target
document.

Next, the Interestingness Modeler maps (520) each con-
text to a separate vector, and optionally maps each focus to
a separate vector. Once these vectors have been created, the
Interestingness Modeler then maps (530) each of the context
vectors to a convolutional layer of a neural network, and also
optionally maps the focus vectors to the convolutional layer
of the neural network. Note also that if a focus is identified
for a document, then the Interestingness Modeler will map
both the focus and context of that document into one vector.
The Interestingness Modeler then continues by mapping
(540) the convolutional layer to a plurality of hidden layers
of the neural network.

Finally, the Interestingness Modeler generates (550) a
learned DSM 150 of interestingness by learning weights for
each of a plurality of transitions between the layers of the
neural network, such that the learned weights minimize a
distance between the vectors of interesting source and target
documents. As discussed throughout this document, the
learned DSM is then made available for a number of uses,
including, but not limited to using features of the DSM to
construct ranking models and the like.

4.0 Exemplary Operating Environments:

The Interestingness Modeler described herein is opera-
tional within numerous types of general purpose or special
purpose computing system environments or configurations.
FIG. 6 illustrates a simplified example of a general-purpose
computer system on which various implementations and
elements of the Interestingness Modeler, as described
herein, may be implemented. It should be noted that any
boxes that are represented by broken or dashed lines in FIG.
6 represent alternate implementations of the simplified com-
puting device, and that any or all of these alternate imple-
mentations, as described below, may be used in combination
with other alternate implementations that are described
throughout this document.
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For example, FIG. 6 shows a general system diagram
showing a simplified computing device 600. Examples of
such devices operable with the Interestingness Modeler,
include, but are not limited to, portable electronic devices,
wearable computing devices, hand-held computing devices,
laptop or mobile computers, communications devices such
as cell phones, smartphones and PDA’s, multiprocessor
systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puters, audio or video media players, handheld remote
control devices, etc. Note also that the Interestingness Mod-
eler may be implemented with any touchscreen or touch-
sensitive surface that is in communication with, or otherwise
coupled to, a wide range of electronic devices or objects.

To allow a device to implement the Interestingness Mod-
eler, the computing device 600 should have a sufficient
computational capability and system memory to enable
basic computational operations. In addition, the computing
device 600 may include one or more sensors 605, including,
but not limited to, accelerometers, cameras, capacitive sen-
sors, proximity sensors, microphones, multi-spectral sen-
sors, etc. Further, the computing device 600 may also
include optional system firmware 625 (or other firmware or
processor accessible memory or storage) for use in imple-
menting various implementations of the Interestingness
Modeler.

As illustrated by FIG. 6, the computational capability of
computing device 600 is generally illustrated by one or more
processing unit(s) 610, and may also include one or more
GPUs 615, either or both in communication with system
memory 620. Note that that the processing unit(s) 610 of the
computing device 600 may be a specialized microprocessor,
such as a DSP, a VLIW, or other micro-controller, or can be
a conventional CPU having one or more processing cores,
including specialized GPU-based cores in a multi-core CPU.

In addition, the simplified computing device 600 may also
include other components, such as, for example, a commu-
nications interface 630. The simplified computing device
600 may also include one or more conventional computer
input devices 640 or combinations of such devices (e.g.,
touchscreens, touch-sensitive surfaces, pointing devices,
keyboards, audio input devices, voice or speech-based input
and control devices, video input devices, haptic input
devices, devices for receiving wired or wireless data trans-
missions, etc.). The simplified computing device 600 may
also include other optional components, such as, for
example, one or more conventional computer output devices
650 (e.g., display device(s) 655, audio output devices, video
output devices, devices for transmitting wired or wireless
data transmissions, etc.). Note that typical communications
interfaces 630, input devices 640, output devices 650, and
storage devices 660 for general-purpose computers are well
known to those skilled in the art, and will not be described
in detail herein.

The simplified computing device 600 may also include a
variety of computer readable media. Computer readable
media can be any available media that can be accessed via
storage devices 660 and includes both volatile and nonvola-
tile media that is either removable 670 and/or non-remov-
able 680, for storage of information such as computer-
readable or computer-executable instructions, data
structures, program modules, or other data. By way of
example, and not limitation, computer readable media may
comprise computer storage media and communication
media. Computer storage media refers to tangible computer
or machine readable media or storage devices such as
DVD’s, CD’s, floppy disks, tape drives, hard drives, optical
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drives, solid state memory devices, RAM, ROM, EEPROM,
flash memory or other memory technology, magnetic cas-
settes, magnetic tapes, magnetic disk storage, or other mag-
netic storage devices, or any other device which can be used
to store the desired information and which can be accessed
by one or more computing devices.

Storage of information such as computer-readable or
computer-executable instructions, data structures, program
modules, etc., can also be accomplished by using any of a
variety of the aforementioned communication media to
encode one or more modulated data signals or carrier waves,
or other transport mechanisms or communications protocols,
and includes any wired or wireless information delivery
mechanism. Note that the terms “modulated data signal” or
“carrier wave” generally refer a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. For example, communi-
cation media includes wired media such as a wired network
or direct-wired connection carrying one or more modulated
data signals, and wireless media such as acoustic, RF,
infrared, laser, and other wireless media for transmitting
and/or receiving one or more modulated data signals or
carrier waves. Combinations of the any of the above should
also be included within the scope of communication media.

Retention of information such as computer-readable or
computer-executable instructions, data structures, program
modules, etc., can also be accomplished by using any of a
variety of the aforementioned communication media to
encode one or more modulated data signals or carrier waves,
or other transport mechanisms or communications protocols,
and includes any wired or wireless information delivery
mechanism. Note that the terms “modulated data signal” or
“carrier wave” generally refer to a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. For example, com-
munication media includes wired media such as a wired
network or direct-wired connection carrying one or more
modulated data signals, and wireless media such as acoustic,
RF, infrared, laser, and other wireless media for transmitting
and/or receiving one or more modulated data signals or
carrier waves. Combinations of the any of the above should
also be included within the scope of communication media.

Further, software, programs, and/or computer program
products embodying the some or all of the various imple-
mentations of the Interestingness Modeler described herein,
or portions thereof, may be stored, received, transmitted, or
read from any desired combination of computer or machine
readable media or storage devices and communication
media in the form of computer executable instructions or
other data structures.

Finally, the Interestingness Modeler described herein may
be further described in the general context of computer-
executable instructions, such as program modules, being
executed by a computing device. Generally, program mod-
ules include routines, programs, objects, components, data
structures, etc., that perform particular tasks or implement
particular abstract data types. The implementations
described herein may also be practiced in distributed com-
puting environments where tasks are performed by one or
more remote processing devices, or within a cloud of one or
more devices, that are linked through one or more commu-
nications networks. In a distributed computing environment,
program modules may be located in both local and remote
computer storage media including media storage devices.
Still further, the aforementioned instructions may be imple-
mented, in part or in whole, as hardware logic circuits,
which may or may not include a processor.
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The foregoing description of the Interestingness Modeler
has been presented for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the
claimed subject matter to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. Further, it should be noted that any or all of
the aforementioned alternate implementations may be used
in any combination desired to form additional hybrid imple-
mentations of the Interestingness Modeler. It is intended that
the scope of the invention be limited not by this detailed
description, but rather by the claims appended hereto.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A computer-implemented process, comprising:

applying a computer to perform process actions for:

receiving a collection of source and target document
pairs;

identifying a separate context for each source document,

the context for each source document comprising a
selection within the source document and a window of
multiple words in the source document around that
selection;

identifying a separate context for each target document,

the context for each target document comprising a first
fixed number of the first words in that target document;
mapping each context to a separate vector;

mapping each of the vectors to a convolutional layer of a

neural network;

mapping the convolutional layer to a plurality of hidden

layers of the neural network;

generating a learned interestingness model by learning

weights for each of a plurality of transitions between
the layers of the neural network, such that the learned
weights minimize a distance between the vectors of the
contexts of the source and target documents;

the interestingness model configured to determine a con-

ditional likelihood of a user interest in transitioning to
an arbitrary target document when that user is consum-
ing an arbitrary source document in view of a context
extracted from that arbitrary source document and a
context extracted from that arbitrary target document;
and

applying the interestingness model to recommend one or

more arbitrary target documents to the user relative to
an arbitrary source document being consumed by the
user.

2. The computer-implemented process of claim 1 further
comprising:

identifying a focus for each source document and each

target document; and

wherein the separate vectors are constructed by mapping

the focus and context of each source document and
each target document to the separate vectors.

3. The computer-implemented process of claim 2 wherein
the focus of a source document is one or more selected
words in the source document.

4. The computer-implemented process of claim 2 wherein
the focus of one or more of the target documents is a fixed
number of words at the beginning of the target document.

5. The computer-implemented process of claim 1 further
comprising applying the learned interestingness model to
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one or more arbitrary source documents to extract semantic
features from those arbitrary source documents.

6. The computer-implemented process of claim 1 further
comprising applying the learned interestingness model to
one or more arbitrary target documents to extract semantic
features from those arbitrary target documents.

7. The computer-implemented process of claim 1 further
comprising generating feature vectors from an output layer
of the learned interestingness model, and applying those
feature vectors as input to train a discriminative model.

8. The computer-implemented process of claim 7 wherein
the discriminative model is a boosted tree ranker trained by
performing a plurality of iterations of boosting rounds, with
each round constructing a regression tree.

9. The computer-implemented process of claim 7 wherein
the discriminative model is used to automatically highlight
interesting content in an arbitrary document being consumed
by the user.

10. The computer-implemented process of claim 7
wherein the discriminative model is used to automatically
perform contextual entity searches, for one or more entities
automatically identified in an arbitrary document being
consumed by the user, for entities likely to be of interest to
the user.

11. The computer-implemented process of claim 7
wherein the discriminative model is used to automatically
prefetch one or more documents likely to be of interest to a
user consuming an arbitrary document.

12. The computer-implemented process of claim 7
wherein the discriminative model is used to automatically
recommend one or more items that are likely to be of interest
to a user consuming an arbitrary document.

13. The computer-implemented process of claim 1
wherein the neural network is constructed from layers
comprising:

an input layer comprising vectors derived from the con-

text;

the convolutional layer connected to the input layer via a

first linear projection matrix, the convolutional layer
extracting semantic features from the vectors of the
input layer;

a max pooling layer connected to the convolutional layer

via a max pooling operation;

the plurality of hidden layers connected to the max

pooling layer via a second linear projection matrix; and
an output layer connected to the plurality of hidden layers
via a third linear projection matrix.

14. The computer-implemented process of claim 1
wherein the context of one or more of the source documents
is one or more anchors in combination with a window of
words around the anchor.

15. The computer-implemented process of claim 1
wherein the context of one or more of the source documents
is a predefined size window of words around each of a
plurality of entities identified in those source documents.

16. A system comprising:

a general purpose computing device; and

a computer program comprising program modules

executable by the computing device, wherein the com-
puting device is directed by the program modules of the
computer program to:

receive a collection of source and target document pairs;

identify a separate focus and a separate context for each

source document and each target document;

the context of each source document comprising a selec-

tion of one or more words within the source document
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and a window of multiple words in the source docu-
ment around that selection;

the focus of each source document comprising a selected
anchor within the source document;

the context of each target document comprising a first
fixed number of the first words in that target document;

the focus of each target document comprising a second
fixed number of the first words in that target document,
the second fixed number being smaller than the first
fixed number;

map the words of each focus to a separate vector and the
words of each context to a separate vector;

for each document, concatenate the corresponding focus
and context vectors into a combined vector;

map each of the combined vectors to a convolutional layer
of a neural network;

map the convolutional layer to a hidden layer of the neural
network;

generate a learned interestingness model by learning
weights for each of a plurality of transitions between
the layers of the neural network, such that the learned
weights minimize a distance between the combined
vectors of the source and target documents;

the interestingness model configured to determine a con-
ditional likelihood of a user interest in transitioning to
an arbitrary target document when that user is consum-
ing an arbitrary source document in view of a context
extracted from that arbitrary source document and a
context extracted from that arbitrary target document;
and

applying the interestingness model to recommend one or
more arbitrary target documents to the user relative to
an arbitrary source document being consumed by the
user.

17. The system of claim 16 further comprising generating

feature vectors from an output layer of the learned interest-
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ingness model, and applying those feature vectors as input
to train a discriminative model.

18. The system of claim 16 wherein mapping the words of
each focus to a separate vector further comprises forming a
one-hot vector and a tri-letter vector for each word in each
focus.

19. A computer-readable storage device having computer
executable instructions stored therein, said instructions caus-
ing a computing device to execute a method comprising:

receiving a collection of source and target document

pairs;

identifying a separate context for each source document

and each target document;

the context for each source document comprising a selec-

tion within the source document and a window of
multiple words in the source document around that
selection;

the context for each target document comprising a first

fixed number of the first words in that target document;
mapping each context to a separate vector;

mapping each of the vectors to a convolutional layer of a

neural network;

mapping the convolutional layer to a plurality of hidden

layers of the neural network;

generating a learned interestingness model by learning

weights for each of a plurality of transitions between
the layers of the neural network, such that the learned
weights minimize a distance between the vectors of the
source and target documents; and

training a discriminative model from an output layer of

the learned interestingness model; and

applying the discriminative model to automatically high-

light content in an arbitrary document being consumed
by that user.



