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(57) ABSTRACT 

Deep Neural Network (DNN) training technique embodi 
ments are presented that train a DNN while exploiting the 
sparseness of non-zero hidden layer interconnection weight 
values. Generally, a fully connected DNN is initially trained 
by sweeping through a full training set a number of times. 
Then, for the most part, only the interconnections whose 
weight magnitudes exceed a minimum weight threshold are 
considered in further training. This minimum weight thresh 
old can be established as a value that results in only a pre 
scribed maximum number of interconnections being consid 
ered when setting interconnection weight values via an error 
back-propagation procedure during the training. It is noted 
that the continued DNN training tends to converge much 
faster than the initial training. 
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EXPLOITING SPARSENESS IN TRAINING 
DEEP NEURAL NETWORKS 

BACKGROUND 

A trained deep neural network (DNN) is known to be a 
powerful discriminative modeling tool, and can be used for a 
variety of purposes. For example, a DNN can be combined 
with a hidden Markov model (HMM) to characterize context 
dependent (CD) phones as pronunciation units of speech. The 
resulting hybrid CD-DNN-HMM takes advantage of the tem 
porally localized discriminative modeling power of a DNN 
and the sequential modeling power of a HMM. A CD-DNN 
HMM can be used in speech recognition systems, handwrit 
ing recognition systems, and human activity recognition/de 
tection systems, among many others. 
One of the key procedures in building such CD-DNN 

HMMs is the training of the DNN. DNNs are computationally 
demanding to train because of the large number of parameters 
involved and because much of the computation is shared 
across states which cannot be done on demand. Only recently 
has training DNNs become feasible owing to easy access to 
high-speed general purpose graphical processing units (GPG 
PUs), and the development of effective DNN layer weight 
initialization techniques. 

SUMMARY 

Deep Neural Network (DNN) training technique embodi 
ments described herein generally train a DNN while exploit 
ing the sparseness of non-zero hidden layer interconnection 
weight values. In one exemplary DNN training technique 
embodiment, a DNN is trained by initially training a fully 
interconnected DNN. To this end, a set of training data entries 
are accessed. Each data entry is then input one by one into the 
input layer of the DNN until all the data entries have been 
input once to produce an interimly trained DNN. Generally, 
after inputting of each data entry, a value of each weight 
associated with each interconnection of each hidden layer is 
set via an error back-propagation procedure so that the output 
from the output layer matches a label assigned to the training 
data entry. The foregoing process is then repeated a number of 
times to produce the initially trained DNN. 

Those interconnections associated with each layer of the 
initially trained DNN whose current weight value exceeds a 
minimum weight threshold are identi?ed next. Each data 
entry is then input again one by one into the input layer until 
all the data entries have been input once to produce a re?ned 
DNN. In this case, after the inputting of each data entry, the 
value of each weight associated with each of the identi?ed 
interconnections of each hidden layer is set via an error back 
propagation procedure so that the output from the output 
layer matches the label assigned to the training data entry. 
This action of inputting each data entry is then repeated a 
number of times to produce the trained DNN. 

It should be noted that this Summary is provided to intro 
duce a selection of concepts, in a simpli?ed form, that are 
further described below in the Detailed Description. This 
Summary is not intended to identify key features or essential 
features of the claimed subject matter, nor is it intended to be 
used as an aid in determining the scope of the claimed subject 
matter. 

DESCRIPTION OF THE DRAWINGS 

The speci?c features, aspects, and advantages of the dis 
closure will become better understood with regard to the 
following description, appended claims, and accompanying 
drawings where: 
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2 
FIG. 1 is a ?ow diagram generally outlining one imple 

mentation deep neural network (DNN) training process that 
exploits the sparseness of non-zero hidden layer interconnec 
tion weight values. 

FIG. 2 is a ?ow diagram generally outlining one imple 
mentation of a process for enforcing a sparseness constraint 
in a continued training of an initially trained DNN that 
involves rounding interconnection weight values with mag 
nitudes below a prescribed minimum weight to zero. 

FIG. 3 is a diagram depicting a data structure for storing a 
weight matrix having a plurality of columns and rows of 
non-zero weight values associated with interconnections 
between a pair of layers of a DNN. 

FIG. 4 is a diagram depicting a general purpose computing 
device constituting an exemplary system for implementing 
DNN training technique embodiments described herein. 

DETAILED DESCRIPTION 

In the following description of Deep Neural Network 
(DNN) training technique embodiments reference is made to 
the accompanying drawings which form a part hereof, and in 
which are shown, by way of illustration, speci?c embodi 
ments in which the technique may be practiced. It is under 
stood that other embodiments may be utilized and structural 
changes may be made without departing from the scope of the 
technique. 
1.0 Sparseness-Exploiting Deep Neural Network Training 

Deep Neural Network (DNN) training technique embodi 
ments described herein generally train a DNN while exploit 
ing the sparseness of non-zero hidden layer interconnection 
weight values. For the purposes of this description, a com 
pleted DNN is de?ned as a neural network having more than 
one hidden layer. 

A trained DNN can be used for a variety of purposes. For 
example, as indicated previously, a DNN can model context 
dependent (CD) phones and can be combined with a hidden 
Markov model (HMM). The resulting hybrid CD-DNN 
HMM takes advantage of the discriminative modeling power 
of a DNN with the sequential modeling power of a HMM. A 
CD-DNN-HMM can be used in speech recognition systems, 
handwriting recognition systems, and human activity recog 
nition/ detection systems, among many others. In the case of a 
speech recognition system, such as is used in a voice search 
task or switchboard phone-call transcription task, a 
CD-DNN-HMM is used to directly model senones (tied CD 
phone states) and approximates the emission probabilities of 
these senones in a HMM speech recognizer. A senone repre 
sents clustered (or tied) triphone states. However, it is not 
intended that the DNN training technique embodiments 
described herein be limited to speech recognition systems, or 
any of the other above-mentioned systems. Rather, the DNN 
training technique embodiments described herein can be 
employed with any DNN used for any purpose. 

1 .1 Deep Neural Network 

DNNs can be considered as conventional multi-layer per 
ceptrons (MLPs) with many hidden layers. Speci?cally, a 
DNN models the posterior probability PS‘0(s|o) of a class s 
given an observation vector 0, as a stack of (L+l) layers of 
log-linear models. The ?rst L layers, 1:0 . . . L—l, model 
hidden binary output units hZ given input vectors vZ as Ber 
noulli distribution 
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(1) 

and the top layer L models the desired class posterior as 
multinomial distribution 

(2) 1 
Z 1 

d 

Pl 

where zZ(vZ):(WZ)T vZ+aZ is the activation at layer 1, WI and aZ 
are the weight matrices and bias vectors at layer 1, and h]-Z and 
zjl(vl)are the j-th component of hZ and zZ(vZ), respectively. 

The precise modeling of sto(s|o) is infeasible as it requires 
integration over all possible values of hZ across all layers. An 
effective practical trick is to replace the marginalization with 
a mean-?eld approximation. Given observation 0, vl:o is set 
and conditional expectation Eh‘vl{hllvl}:o(zl(vl)) is chosen 
as input v1+1 to the next layer, where oJ-(z):1/(1+e_zf) is sig 
moid function. 
1.2 Training a Deep Neural Network 
DNNs, being ‘deep’ MLPs, can be trained with the well 

known error back-propagation (BP) procedure. Because BP 
can easily get trapped in poor local optima for deep networks, 
it is helpful to ‘pretrain’ the model in a layer growing fashion 
as will be described shortly. However, before describing this 
pretraining it would be useful to brie?y describe BP. MLPs 
are often trained with the error back-propagation procedure 
with stochastic gradient ascent 

(3) 

for an objective function D and learning rate 6. Typically, the 
objective is to maximize the total log posterior probability 
over the T training samples O:{o(t)} with ground-truth labels 
s(t), i.e. 

D(O)IEF1TlOg Psio(s(l)10(l)), (4) 

then the gradients are 

with error signals eZ(t):8D/8vl+l(t) as back-propagated from 
networks 1+1 and above; network l’s output-nonlinearity’s 
derivative 001(t) if present; component-wise derivatives 

O'j-(z):0j(z)-(l—0j(z))and (log softmax)'j(z):6s(,)J-— 

and Kronecker delta 6. 
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4 
1.3 Exploiting Sparseness 
The DNN training technique embodiments described 

herein operate as a computer-implemented process for train 
ing a DNN. This can involve employing a computer-readable 
storage medium having computer-executable instructions 
stored thereon for achieving the training. Suitable computing 
devices and storage media will be described in more detail in 
the Exemplary Operating Environments section to follow. 

It has been found that recognition accuracy of DNNs 
increases with the number of hidden units and layers, if the 
training process is controlled by a held-out set. Resulting 
optimal models, however, are large. Fortunately, inspection 
of fully connected DNNs after the training has shown that a 
large portion of the interconnections have very small weights. 
For example, the distribution of weight magnitudes of a typi 
cal 7-hidden-layer DNN has been found to have about 87% of 
their interconnection weight magnitudes below 0.2 and 70% 
of their interconnection weight magnitudes below 0.1. As 
such, it can be advantageous to reduce the DNN model size by 
removing interconnections with small weight magnitudes so 
that deeper and wider DNNs can be employed more effec 
tively. Note that similar observations patterns were not found 
in the case of the DNN bias parameters. This is expected since 
nonzero bias terms indicate the shift of hyperplanes from the 
origin. Since the number of bias parameters is only about 
1/2000 of the total number of parameters, keeping bias 
parameters intact does not affect the ?nal model size in a 
noticeable way. 
1.3.1 Convex Constraint Formulation 

Generally, DNN training technique embodiments 
described herein are formulated as a multi-obj ective optimi 
zation problem in which the aforementioned log conditional 
probability D is maximized, while at the same time the num 
ber of non-zero weights is minimized. This two-objective 
optimization problem can be converted into a single objective 
optimization problem with convex constraint formulations. 
More particularly, the log conditional probability D is sub 

ject to the constraint 

HWHOSq (6) 

where q is a threshold value for the maximal number of 
nonzero weights allowed. 

This constrained optimization problem is hard to solve. 
However, an approximate solution can be found following 
two observations: First, after sweeping through the full train 
ing set several times the weights become relatively stablei 
i.e., they tend to remain either large or small magnitudes. 
Second, in a stabilized model, the importance of the connec 
tion is approximated well by the magnitudes of the weights 
(times the magnitudes of the corresponding input values, but 
these are relatively uniform within each layer since on the 
input layer, features are typically normalized to zero-mean 
and unit-variance, and hidden-layer values are probabilities). 

In simpli?ed terms, this leads to a simple yet effective 
procedure for training a “sparse” DNN. Generally, a fully 
connected DNN is trained by sweeping through the full train 
ing set a number of times. Then, for the most part, only the 
interconnections whose weight magnitudes are in top q are 
considered in further training. Other interconnections are 
removed from the DNN. It is noted that the training is con 
tinued after pruning the interconnections because the log 
conditional probability value D is reduced due to connection 
pruning, especially when the degree of sparseness is high 
(i.e., q is small). However, the continued DNN training tends 
to converge much faster than the original training. 
More particularly, referring to FIG. 1, in one implementa 

tion, the DNN training involves using a computing device 
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(such as one described in the Exemplary Operating Environ 
ments section to follow) to execute the following process 
actions. First, a fully interconnected DNN is initially trained 
by accessing a set of training data entries (process action 
100). This set of training data entries could correspond to a 
so-called mini-batch as is known in the neural network train 
ing arts. In addition, a fully interconnected DNN is de?ned as 
one including an input layer into which training data is input, 
an output layer from which an output is generated, and a 
plurality of hidden layers. Each data entry is then input one by 
one into the input layer of the DNN until all the data entries 
have been input once to produce an interimly trained DNN 
(process action 102). Generally, after inputting of each data 
entry, a value of each weight associated with each intercon 
nection of each hidden layer is set via an error back-propa 
gation procedure (such as described previously) so that the 
output from the output layer matches a label assigned to the 
training data entry. For example, when the DNN being trained 
is part of a previously-described CD-DNN-HMM used in 
speech recognition systems, accessing the set of training data 
entries involves accessing a set of speech frames each of 
which has a corresponding senone label assigned to it. In 
addition, inputting each speech frame into the input layer 
until all the data entries have been input once to produce the 
interimly trained DNN or a re?ned DNN, involves, after the 
inputting of each speech frame, setting the values of said 
weights associated with the interconnections of each hidden 
layer via the error back-propagation procedure so that the 
output from the output layer matches the senone label 
assigned to the speech frame. 

The foregoing process is then repeated a number of times to 
produce an initially trained DNN. To this end, it is determined 
if process actions 100 and 102 have been repeated a pre 
scribed number of times (process action 104). If not, then 
actions 100 and 102 are repeated. This continues until it is 
determined the process has been repeated the prescribed 
number of times. In one implementation, the prescribed num 
ber of times actions 100 and 102 are repeated to establish the 
initially trained DNN ranges between 5 and 50 which is task 
dependent. 

Next, those interconnections associated with each layer of 
the initially trained DNN whose current weight value exceeds 
a minimum weight threshold are identi?ed (process action 
106). In one implementation, the minimum weight threshold 
is established as a value that results in only a prescribed 
maximum number of interconnections being considered 
when setting interconnection weight values via the error 
back-propagation procedure. In another implementation, the 
prescribed maximum number of interconnections ranges 
between 10% and 40% of all interconnections. 

The aforementioned continued training is then performed 
on the pruned DNN. More particularly, referring to FIG. 1, 
each data entry is input one by one into the input layer until all 
the data entries have been input once to produce a re?ned 
DNN (process action 108). In this case, after the inputting of 
each data entry, the value of each weight associated with each 
of the identi?ed interconnections of each hidden layer (i.e., 
the ones exceeding the minimum weight threshold) is set via 
an error back-propagation procedure so that the output from 
the output layer matches a label assigned to the training data 
entry. When the DNN being trained is part of a previously 
described speech recognition CD-DNN-HMM, inputting 
each speech frame into the input layer until all the data entries 
have been input once involves, after the inputting of each 
speech frame, setting the values of said weights associated 
with the previously identi?ed interconnections of each hid 
den layer via the error back-propagation procedure to pro 
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6 
duce an output from the output layer that corresponds to the 
senone label associated with the speech frame. 

Process action 108 is then repeated a number of times to 
produce the trained DNN. To this end, it is determined if 
process action 108 has been repeated a desired number of 
times (process action 110). If not, then action 108 is repeated. 
This continues until it is determined the process has been 
repeated the desired number of times. In one implementation, 
the desired number of times action 108 is repeated is estab 
lished by determining when the interconnection weights 
associated with the each hidden layer do not vary between 
iterations by more than a prescribed training threshold. In 
another implementation, process action 108 is repeated a 
prescribed number of times (e.g., between 5 and 50 which is 
task dependent). 
1.3.2 Sparseness Constraint Enforcement 

It is noted that it is advantageous to enforce the sparseness 
constraint of Eq (6) to a large extent in the continued training 
of the “sparse” DNN. One way of keeping the same sparse 
connections (and thus same sparseness constraint), is to 
employ a mask where all the pruned interconnections are 
recorded. The masking approach is cleaner and prevents con 
sideration of all the pruned interconnections in the continued 
training (and so strictly enforcing the sparseness constraint), 
but it also requires storage of a huge masking matrix. Another 
way to enforce the sparseness constraint in the continued 
training involves rounding interconnection weight values 
with magnitude below a prescribed minimum weight thresh 
old to zero (e.g., min{0.02, 0/2} where 0 is the minimal 
weight magnitude that survived the pruning). Note that only 
weights smaller than the minimum weight threshold are 
rounded down to zero--instead of those smaller than 6. This is 
because the weights may shrink and be suddenly removed, 
and it is desirable to keep the effect of this removal to mini 
mum without sacri?cing the degree of sparseness. 

With this latter scenario, if a previously eliminated inter 
connection exceeds the minimum weight threshold, then it 
would be considered once again. Though this technically 
violates the sparseness constrain it has been found that it is a 
rare occurrence. Similarly, if a non-eliminated interconnec 
tion does not exceed the minimum weight threshold, it would 
be eliminated from consideration in the next training iteration 
(although it could feasibly exceed the threshold in a future 
training iteration and be considered once again). This latter 
scenario also technically violates the sparseness constrain. 
However, again it was found to be a rare occurrence. 

In view of the foregoing, FIG. 2 outlines one implementa 
tion of a process to enforce the sparseness constraint in the 
continued training that involves rounding interconnection 
weight values with magnitudes below a prescribed minimum 
weight to zero. More particularly, a computing device (such 
as one described in the Exemplary Operating Environments 
section to follow) is employed to identify each interconnec 
tion associated with each layer of the fully-connected and 
initially trained DNN whose interconnection weight value 
does not exceed a ?rst weight threshold (process action 200). 
In one implementation, the ?rst minimum weight threshold is 
established as a value that results in only a prescribed maxi 
mum number of interconnections being considered when set 
ting interconnection weight values via the error back-propa 
gation procedure. In another implementation, the prescribed 
maximum number of interconnections ranges between 10% 
and 40% of all interconnections. 
The value of each of these identi?ed interconnections is 

then set to zero (process action 202), and the interconnection 
weight value of the remaining non-zero valued interconnec 
tions having the smallest value is identi?ed (process action 
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204). Each data entry is input one by one into the input layer 
until all the data entries have been input once to produce a 
current re?ned DNN (process action 206). In this case, after 
the inputting of each data entry, the values of the weights 
associated with the interconnections of each hidden layer are 
set via the error back-propagation procedure so that the output 
from the output layer matches a label assigned to the training 
data entry. As before, when the DNN being trained is part of 
a speech recognition CD-DNN-HMM, inputting each speech 
frame into the input layer until all the data entries have been 
input once involves, after the inputting of each speech frame, 
setting the values of said weights associated with the inter 
connections of each hidden layer via the error back-propaga 
tion procedure to produce an output from the output layer that 
corresponds to the senone label associated with the speech 
frame. 

Next, those interconnections associated with each hidden 
layer of the last produced re?ned DNN whose interconnec 
tion weight value does not exceed a second weight threshold 
are identi?ed (process action 208). In one implementation, 
the second weight threshold is the lesser of a prescribed 
minimum weight value (e.g., 0.02) or a prescribed percentage 
of the previously-identi?ed smallest non-zero interconnec 
tion weight value (which percentage for example can range 
between 20% and 80%). In tested embodiments, 50 percent of 
the identi?ed smallest non-zero interconnection weight value 
was used. 

The value of each of the identi?ed interconnections whose 
interconnection weight value does not exceed the second 
weight threshold is then set to zero (process action 210). 
Process actions 206 through 210 are then repeated a number 
of times to produce the trained DNN. To this end, it is deter 
mined if process actions 206 through 210 have been repeated 
a desired number of times (process action 212). If not, then 
actions 206 through 210 are repeated. This continues until it 
is determined the process has been repeated the desired num 
ber of times. In one implementation, the desired number of 
times actions 206 through 210 are repeated is established by 
determining when the interconnection weights associated 
with the each hidden layer do not vary between iterations by 
more than a prescribed training threshold. In another imple 
mentation, process actions 206 through 210 are repeated a 
prescribed number of times (e.g., between 5 and 50 which is 
task dependent). 
1.4 Data Structure 
The sparse weights learned in the DNN training technique 

embodiments described herein generally have random pat 
terns. Data structures to effectively exploit the sparse weights 
to reduce model size and to speed up decoding calculations 
(WTv) will now be described. In general, it is advantageous to 
only store and calculate with the nonzero-weights. To speed 
up the calculation, in one implementation, the indexes and 
actual weights are stored in adjacent groups so that they can 
be retrieved ef?ciently with good locality. A slightly different 
but almost equally ef?cient data structure implementation, 
pairs of indexes and weights are grouped. With the proposed 
data structure, each column can be multiplied with the input 
vector in parallel. To further speed up the calculation, paral 
lelization can also be exploited within each column. 
One exemplary implementation of such a data structure is 

depicted in FIG. 3. In this implementation, a computer-read 
able storage medium is used to store data for access by a deep 
neural network (DNN) training application program being 
executed on a computer. The aforementioned data structure is 
stored in this storage medium and has information used by 
said DNN training application program. This information 
generally represents a weight matrix having a plurality of 
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8 
columns and rows of weight values associated with intercon 
nections between a pair of layers of the DNN. More particu 
larly, this data structure includes a header data structure ele 
ment 300 and a plurality of column data structure elements 
302. The header data structure element 300 includes a total 
columns number 304 representing the number of columns of 
the weight matrix. This number 304 is followed by a series of 
column index numbers 306, each of which identi?es a loca 
tion in the data structure where information corresponding to 
a different one of the plurality of weight matrix columns 
begins. Each of the column data structure elements 302 gen 
erally includes information corresponding to a different one 
of the plurality of weight matrix columns. More particularly, 
each of the column data structure elements 302 includes a 
total non-zero weight value number 308 representing the 
number of non-zero weight values in the column data struc 
ture element. This is followed by a series of row identi?cation 
numbers 310, each of which identi?es a row of the column of 
the weight matrix corresponding to the column data structure 
element that is associated with a non-zero weight value. 
These row identi?cation numbers 310 are then followed by a 
series of non-zero weight values 312, each of which is 
assigned to a different one of the rows of the column of the 
weight matrix corresponding to the column data structure 
element that is associated with a non-zero weight value. 
Note that the data structure shown in FIG. 3 is just one 

exemplary implementation. The data structure depends 
heavily on the hardware architecture chosen and the trade-off 
between storage size and computation speed. For example, 
the index block iks can be further compressed by keeping the 
delta indexes (requires only one byte per index). Furthermore, 
if streaming SIMD extension (SSE) instructions are used, it is 
possible to group frames into batches of four and store non 
zero weights row-?rst to achieve similar computation 
speedup. 
The saving of storage from using the data structure shown 

in FIG. 3 is obvious. For an N><M single-precision matrix with 
x % nonzero-weights, the normal matrix requires 4><N><M 
bytes. With the data structure of FIG. 3, it requires 2+6><M 
(1 +x %><N) bytes, which takes less space when x %<2/3— l/N. 
The speedup in calculation depends heavily on the imple 

mentation and hardware used. For a naive matrix-vector mul 
tiplication (i.e., SSE is not used), it requires N><M multipli 
cations and summation, and 2><N><M memory accesses. With 
the data structure of FIG. 3, it requires only x %><N><M mul 
tiplications and summations, and 3><x %><N><M memory 
accesses. 

2.0 Exemplary Operating Environments 
The DNN training technique embodiments described 

herein are operational within numerous types of general pur 
pose or special purpose computing system environments or 
con?gurations. FIG. 4 illustrates a simpli?ed example of a 
general-purpose computer system on which various embodi 
ments and elements of the DNN training technique embodi 
ments, as described herein, may be implemented. It should be 
noted that any boxes that are represented by broken or dashed 
lines in FIG. 4 represent alternate embodiments of the sim 
pli?ed computing device, and that any or all of these alternate 
embodiments, as described below, may be used in combina 
tion with other alternate embodiments that are described 
throughout this document. 

For example, FIG. 4 shows a general system diagram 
showing a simpli?ed computing device 10. Such computing 
devices can be typically be found in devices having at least 
some minimum computational capability, including, but not 
limited to, personal computers, server computers, hand-held 
computing devices, laptop or mobile computers, communi 
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cations devices such as cell phones and PDA’s, multiproces 
sor systems, microprocessor-based systems, set top boxes, 
programmable consumer electronics, network PCs, mini 
computers, mainframe computers, audio or video media play 
ers, etc. 

To allow a device to implement the DNN training tech 
nique embodiments described herein, the device should have 
a suf?cient computational capability and system memory to 
enable basic computational operations. In particular, as illus 
trated by FIG. 4, the computational capability is generally 
illustrated by one or more processing unit(s) 12, and may also 
include one or more GPUs 14, either or both in communica 
tion with system memory 16. Note that the processing unit(s) 
12 of the general computing device may be specialized micro 
processors, such as a DSP, aVLIW, or other micro-controller, 
or can be conventional CPUs having one or more processing 
cores, including specialized GPU-based cores in a multi-core 
CPU. 

In addition, the simpli?ed computing device of FIG. 4 may 
also include other components, such as, for example, a com 
munications interface 18. The simpli?ed computing device of 
FIG. 4 may also include one or more conventional computer 
input devices 20 (e.g., pointing devices, keyboards, audio 
input devices, video input devices, haptic input devices, 
devices for receiving wired or wireless data transmissions, 
etc.). The simpli?ed computing device of FIG. 4 may also 
include other optional components, such as, for example, one 
or more conventional display device(s) 24 and other computer 
output devices 22 (e.g., audio output devices, video output 
devices, devices for transmitting wired or wireless data trans 
missions, etc.). Note that typical communications interfaces 
18, input devices 20, output devices 22, and storage devices 
26 for general-purpose computers are well known to those 
skilled in the art, and will not be described in detail herein. 
The simpli?ed computing device of FIG. 4 may also 

include a variety of computer readable media. Computer 
readable media can be any available media that can be 
accessed by computer 10 via storage devices 26 and includes 
both volatile and nonvolatile media that is either removable 
28 and/or non-removable 30, for storage of information such 
as computer-readable or computer-executable instructions, 
data structures, program modules, or other data. By way of 
example, and not limitation, computer readable media may 
comprise computer storage media and communication 
media. Computer storage media includes, but is not limited 
to, computer or machine readable media or storage devices 
such as DVD’s, CD’s, ?oppy disks, tape drives, hard drives, 
optical drives, solid state memory devices, RAM, ROM, 
EEPROM, ?ash memory or other memory technology, mag 
netic cassettes, magnetic tapes, magnetic disk storage, or 
other magnetic storage devices, or any other device which can 
be used to store the desired information and which can be 
accessed by one or more computing devices. 

Retention of information such as computer-readable or 
computer-executable instructions, data structures, program 
modules, etc., can also be accomplished by using any of a 
variety of the aforementioned communication media to 
encode one or more modulated data signals or carrier waves, 
or other transport mechanisms or communications protocols, 
and includes any wired or wireless information delivery 
mechanism. Note that the terms “modulated data signal” or 
“carrier wave” generally refer to a signal that has one or more 
of its characteristics set or changed in such a manner as to 
encode information in the signal. For example, communica 
tion media includes wired media such as a wired network or 
direct-wired connection carrying one or more modulated data 
signals, and wireless media such as acoustic, RF, infrared, 
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10 
laser, and other wireless media for transmitting and/ or receiv 
ing one or more modulated data signals or carrier waves. 
Combinations of the any of the above should also be included 
within the scope of communication media. 

Further, software, programs, and/ or computer program 
products embodying some or all of the various DNN training 
technique embodiments described herein, orportions thereof, 
may be stored, received, transmitted, or read from any desired 
combination of computer or machine readable media or stor 
age devices and communication media in the form of com 
puter executable instructions or other data structures. 

Finally, the DNN training technique embodiments 
described herein may be further described in the general 
context of computer-executable instructions, such as program 
modules, being executed by a computing device. Generally, 
program modules include routines, programs, objects, com 
ponents, data structures, etc., that perform particular tasks or 
implement particular abstract data types. The embodiments 
described herein may also be practiced in distributed com 
puting environments where tasks are performed by one or 
more remote processing devices, or within a cloud of one or 
more devices, that are linked through one or more communi 
cations networks. In a distributed computing environment, 
program modules may be located in both local and remote 
computer storage media including media storage devices. 
Still further, the aforementioned instructions may be imple 
mented, in part or in whole, as hardware logic circuits, which 
may or may not include a processor. 
3.0 Other Embodiments 

It is noted that any or all of the aforementioned embodi 
ments throughout the description may be used in any combi 
nation desired to form additional hybrid embodiments. In 
addition, although the subject matter has been described in 
language speci?c to structural features and/or methodologi 
cal acts, it is to be understood that the subject matter de?ned 
in the appended claims is not necessarily limited to the spe 
ci?c features or acts described above. Rather, the speci?c 
features and acts described above are disclosed as example 
forms of implementing the claims. 

Wherefore, what is claimed is: 
1. A computer-implemented process for training a deep 

neural network (DNN), comprising: 
using a computer to perform the following process actions: 
(a) initially training a fully interconnected DNN compris 

ing an input layer into which training data is input, an 
output layer from which an output is generated, and a 
plurality of hidden layers, wherein said training com 
prises, 
(i) accessing a set of training data entries, 
(ii) inputting each data entry of said set one by one into 

the input layer until all the data entries have been input 
once to produce an interimly trained DNN, such that 
after the inputting of each data entry, a value of each 
weight associated with each interconnection of each 
hidden layer are set via an error back-propagation 
procedure so that the output from the output layer 
matches a label assigned to the training data entry, 

(iii) repeating actions (i) and (ii) a number of times to 
establish an initially trained DNN; 

(b) identifying each interconnection associated with each 
layer of the initially trained DNN whose interconnection 
weight value does not exceed a ?rst weight threshold; 

(c) setting the value of each of identi?ed interconnection to 
zero; 

(d) inputting each data entry of said set one by one into the 
input layer until all the data entries have been input once 
to produce a current re?ned DNN, such that after the 
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inputting of each data entry, the values of the weights 
associated with the interconnections of each hidden 
layer are set via an error back-propagation procedure so 
that the output from the output layer matches the label 
assigned to the training data entry; 

(e) identifying those interconnections associated with each 
hidden layer of the last produced re?ned DNN whose 
interconnection weight value does not exceed a second 

weight threshold; 
(f) setting the value of each of the identi?ed interconnec 

tions whose interconnection weight value does not 
exceed the second weight threshold to zero; and 

(g) repeating actions (d) through (f) a number of times to 
produce said trained DNN. 

2. The process of claim 1, further comprising the process 
actions of: 

after setting the value of each of identi?ed interconnection 
whose interconnection weight value does not exceed the 
?rst weight threshold to zero, identifying the intercon 
nection weight value having the smallest non-zero 
value; and 

establishing the second weight threshold to be the lesser of 
a prescribed minimum weight value or a prescribed per 
centage of the identi?ed smallest non-zero interconnec 
tion weight value. 

3. The process of claim 2, wherein the prescribed minimum 
weight value ranges between 0.01 and 0.8. 

4. The process of claim 2, wherein the prescribed percent 
age of the identi?ed smallest non-zero interconnection 
weight value ranges between 20% and 80%. 

5. The process of claim 1, wherein the ?rst weight thresh 
old is established as a value that results in only a prescribed 
maximum number of non-zero-weighted interconnections 
once each of identi?ed interconnection whose interconnec 
tion weight value does not exceed the ?rst weight threshold 
are set to zero. 

6. The process of claim 5, wherein the prescribed maxi 
mum number of non-zero-weighted interconnections ranges 
between 10% and 40%. 

7. The process of claim 1, wherein the number of times 
actions (a)(i) and (a)(ii) are repeated to establish the initially 
trained DNN ranges between 5 and 50. 

8. The process of claim 1, wherein the number of times 
actions (d) through (f) are repeated to establish the trained 
DNN ranges between 5 and 50. 

9. The process of claim 1, wherein the number of times 
actions (d) through (f) are repeated to establish the initially 
trained DNN corresponds to the number of times it takes for 
the interconnection weights associated with each hidden 
layer to not vary between iterations by more than a prescribed 
training threshold. 

10. The process of claim 1, wherein the process action of 
accessing the set of training data entries, comprises accessing 
a set of training data entries each data entry of which has a 
corresponding label assigned thereto, and wherein the pro 
cess actions of inputting each data entry of said set one by one 
into the input layer until all the data entries have been input 
once to produce the interimly trained DNN or a re?ned DNN, 
comprises, after the inputting of each data entry, setting the 
values of said weights associated with the interconnections of 
each hidden layer via the error back-propagation procedure 
so that the output from the output layer matches a label 
assigned to the training data entry. 

11. The process of claim 10, wherein the process action of 
accessing the set of training data entries each data entry of 
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12 
which has a corresponding label assigned thereto, comprises 
accessing a set of speech frames each of which corresponds to 
a senone label. 

12. A computer-implemented process for training a deep 
neural network (DNN), comprising: 

using a computer to perform the following process actions: 
(a) initially training a fully interconnected DNN compris 

ing an input layer into which training data is input, an 
output layer from which an output is generated, and a 
plurality of hidden layers, wherein said training com 
prises, 
(i) accessing a set of training data entries, 
(ii) inputting each data entry of said set one by one into 

the input layer until all the data entries have been input 
once to produce an interimly trained DNN, such that 
after the inputting of each data entry, a value of each 
weight associated with each interconnection of each 
hidden layer are set via an error back-propagation 
procedure so that the output from the output layer 
matches a label assigned to the training data entry, 

(iii) repeating actions (i) and (ii) a number of times to 
establish an initially trained DNN; 

(b) identifying those interconnections associated with each 
layer of the initially trained DNN whose current weight 
value exceeds a minimum weight threshold; 

(c) inputting each data entry of said set one by one into the 
input layer until all the data entries have been input once 
to produce a re?ned DNN, such that after the inputting of 
each data entry, the value of each weight associated with 
each of the identi?ed interconnections of each hidden 
layer is set via an error back-propagation procedure so 
that the output from the output layer matches the label 
assigned to the training data entry; and 

(d) repeating action (c) a number of times to produce said 
trained DNN. 

13. The process of claim 12, wherein the minimum weight 
threshold is established as a value that results in only a pre 
scribed maximum number of interconnections being consid 
ered when setting interconnection weight values via the error 
back-propagation procedure. 

14. The process of claim 13, wherein the prescribed maxi 
mum number of interconnections ranges between 10% and 
40% of all interconnections. 

15. The process of claim 12, wherein the number of times 
actions (a)(i) and (a)(ii) are repeated to establish the initially 
trained DNN ranges between 5 and 50. 

16. The process of claim 12, wherein the number of times 
action (c) is repeated to establish the trained DNN ranges 
between 5 and 50. 

17. The process of claim 12, wherein the number of times 
action (c) is repeated to establish the initially trained DNN 
corresponds to the number of times it takes for the intercon 
nection weights associated with each hidden layer to not vary 
between iterations by more than a prescribed training thresh 
old. 

18. The process of claim 12, wherein the process action of 
accessing the set of training data entries, comprises accessing 
a set of training data entries each data entry of which has a 
corresponding label assigned thereto, and wherein the pro 
cess actions of inputting each data entry of said set one by one 
into the input layer until all the data entries have been input 
once to produce the interimly trained DNN or a re?ned DNN, 
comprises, after the inputting of each data entry, setting the 
values of said weights associated with the interconnections of 
each hidden layer via the error back-propagation procedure 
so that the output from the output layer matches a label 
assigned to the training data entry. 
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19. The process of claim 18, wherein the process action of 
accessing the set of training data entries each data entry of 
which has a corresponding label assigned thereto, comprises 
accessing a set of speech frames each of which corresponds to 
a senone label. 

20. A computer storage medium for storing data for access 
by a deep neural network (DNN) training application pro 
gram being executed on a computer, comprising: 

a data structure stored in said storage medium, said data 
structure comprising information used by said DNN 
training application program, said information repre 
senting a weight matrix having a plurality of columns 
and rows of weight values associated with interconnec 
tions between a pair of layers of the DNN, said data 
structure comprising: 
a header data structure element comprising, 

a total columns number representing the number of 
columns of said weight matrix, followed by, 

a series of column index numbers each of which iden 
ti?es a location in the data structure where infor 
mation corresponding to a different one of the plu 
rality of weight matrix columns begins; and 

a plurality of column data structure elements each of 
which comprises information corresponding to a dif 
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ferent one of the plurality of weight matrix columns, 
each of said column data structure elements compris 
ing, 
a total non-zero weight value number representing the 
number of non-zero weight values in the column 
data structure element, followed by, 

a series of row identi?cation numbers each of which 
identi?es a row of the column of the weight matrix 
corresponding to the column data structure element 
that is associated with a non-zero weight value, 
followed by, 

a series of non-zero weight values each of which is 
assigned to a different one of the rows of the column 
of the weight matrix corresponding to the column data 
structure element that is associated with a non-zero 
weight value; and wherein 

said computer storage media consists of at least one of 
DVD’s, or CD’s, or ?oppy disks, or tape drives, or hard 
drives, or optical drives, or solid state memory devices, 
or RAM, or ROM, or EEPROM, or ?ash memory, or 
magnetic cassettes, or magnetic tapes, or magnetic disk 
storage, or other magnetic storage devices. 

* * * * * 


