
(12) United States Patent
Yu et a].

USOO8700552B2

US 8,700,552 B2
Apr. 15, 2014

(10) Patent N0.:
(45) Date of Patent:

(54) EXPLOITING SPARSENESS IN TRAINING
DEEP NEURAL NETWORKS

(75) Inventors: Dong Yu, Bothell, WA (US); Li Deng,
Redmond, WA (U S); Frank Torsten
Bernd Seide, Beijing (CN); Gang Li,
Beijing (CN)

(73) Assignee: Microsoft Corporation, Redmond, WA
(Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 253 days.

(21) Appl.No.: 13/305,741

(22) Filed: Nov. 28, 2011

(65) Prior Publication Data

US 2013/0138589 A1 May 30, 2013

(51) Int. Cl.
G06F 15/18 (2006.01)
G06N 3/08 (2006.01)

(52) US. Cl.
USPC 706/25

(58) Field of Classi?cation Search
None
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,687,286 A 11/1997 Bar-Yam
5,799,276 A 8/1998 Komissarchik et al.
5,862,519 A 1/1999 Sharmaetal.
6,128,609 A 10/2000 Rose
7,444,282 B2 10/2008 Choo et a1.

2009/0216528 A1
2009/0287624 A1

8/2009 Gemello et al.
11/2009 Rouat et al.

OTHER PUBLICATIONS

Yu, D., L. Deng, Deep learning and its applications to signal and
information processing, IEEE Signal Processing Magazine, Jan.
2011, vol. 28, N0. 1, pp. 145-154.
Duch, W., J. Korczak, Optimization and global minimization meth
ods suitable for neural networks, Neural Computing Surveys, v01. 2,
Dec. 1998, pp. 1-41.
Dahl, G. E., D.Yu, L. Deng, A. Acero, Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition, IEEE
Transactions on Audio, Speech & Language Processing, Jan. 2012,
vol. 20, N0. 1, pp. 30-42.
Yu, D., Y.-C. Ju, Y.-Y. Wang, G. Zweig, A. Acero, Automated direc
tory assistance systemiFrom theory to practice, 8th Annual Conf. of
the Int’l Speech Communication Association, Aug. 2007, pp. 2709
2712, Antwerp, Belgium.

(Continued)

Primary Examiner * Kakali Chaki

Assistant Examiner * Ababacar Seck

(74) Attorney, Agent, or Firm * Steve Wight; Carole
Boelitz; Micky Minhas

(57) ABSTRACT

Deep Neural Network (DNN) training technique embodi
ments are presented that train a DNN while exploiting the
sparseness of non-zero hidden layer interconnection weight
values. Generally, a fully connected DNN is initially trained
by sweeping through a full training set a number of times.
Then, for the most part, only the interconnections whose
weight magnitudes exceed a minimum weight threshold are
considered in further training. This minimum weight thresh
old can be established as a value that results in only a pre
scribed maximum number of interconnections being consid
ered when setting interconnection weight values via an error
back-propagation procedure during the training. It is noted
that the continued DNN training tends to converge much
faster than the initial training.

20 Claims, 3 Drawing Sheets

100

Access The Set Of TraIning D805 EnlrIes

1'12 Input Each TmInIng Data Entry, one By one, In:
The InpuI LayerOIThe DNN um All Tne Data
Entries Have Been lnpul Once To Produce An

InIenme TraIned DNN

104

Has Tne
DNN Been lnterlmly TraIned A Prescrlbed

Number Of TIrrIes
7

Yes

105 Identify Those lmerwnnemiuns AssocIated WIIn
Each Hidden Layer Oane IndIaIIy TraIned DNN
Whose Current Weight Value Exoews A Mlnlmum

WEII'II Threshold

Input Each TraInIng Data Entry, One By One, Into
The Input LayerOane DNN UnlII All The Data

105 EntrIes Have Been Inde Onoe To Produce A
Re?ned mm wnere A?erThs lnpumng 04an

Dsla EnIry, Tne Value 0I seen WsIght Associated
wIIn Enen Oane Idennned lntemonnechons cn Each
Hidden Layer Is SetVIa An Ermr BackpmpagatIon
Preeeddre So That Me 011de From Tne OUIDU!
Layer Matches A Label Assigned To Tne TmIning

Data Entry

110

Has Tne
DNN Been Re?ned A DeeIred NumberOf

11rnee
7

Yes

I

US 8,700,552 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Hassibi, B., D. G. Stork, Second order derivatives for network prun
ing, Optimal brain surgeon, Advances in Neural Information Process
ing Systems, Nov. 30-Dec. 3, 1992, pp. 164-171, Denver, Colorado,
USA.

Renals, S., N. Morgan, H. Bourlard, M. Cohen, and H. Franco,
Connectionist probability estimators in HMM speech recognition,
IEEE Trans. Speech and Audio Processing, Jan. 1994, vol. 2, No. 1,
pp. 161-175.
Fritsch, J ., M. Finke, ACID/HNN: clustering hierarchies of neural
networks for context-dependent connectionist acoustic modeling,
Proc. of the 1998 IEEE Int’l Conf. on Acoustics, Speech and Signal
Processing, May 1998, pp. 505-508 vol. 1, Seattle, WA, USA.
Saul, L. K., T. Jaakkola, M. I. Jordan, Mean ?eld theory for sigmoid
beliefnetworks, J. Artif. Intell. Res., Jan. 1996, vol. 4, pp. 61-76.
Hinton, G. E., R. R. Salakhutdinov, Reducing the dimensionality of
datawith neural networks, Science, Jul. 2006, vol. 313, No. 5786, pp.
504-507.

Langford, J ., L. Li, T. Zhang, Sparse online learning via truncated
gradient, J. of Machine Learning Research, Dec. 2009, vol. 10, pp.
777-801.
Zweig, G., P Nguyen, A segmental CRF approach to large vocabu
lary continuous speech recognition, IEEE Workshop on Automatic
Speech Recognition & Understanding, Nov. 13-Dec. 17, 2009, pp.
152-157.
Seide, F., G. Li, D. Yu, Conversational speech transcription using
context-dependent deep neural networks, Interspeech 2011, 12th
Annual Conf. of the Int’l Speech Communication Association, Aug.
2011, pp. 437-440, Florence, Italy.
Peterson, C., J. R. Anderson, A mean ?eld theory learning algorithm
for neural networks, Complex Systems, vol. 1, No. 5, 1987, pp.
995-1019.
LeCun,Y., J. S. Denker, S. A. Solla, Optimal brain damage, Advances
in Neural Information Processing Systems, NIPS, Nov. 1989, pp.
598-605, Denver, Colorado, USA.
Seide, F., Gang Li, G., X. Chen, and D. Yu, Feature engineering in
context-dependent deep neural networks for conversational speech
transcription, Automatic Speech Recognition and Understanding,
Dec. 2011.

US. Patent Apr. 15, 2014 Sheet 1 0f3 US 8,700,552 B2

(Enter l

100

\ '
Access The Set Of Training Data Entries

I
102 Input Each Training Data Entry, One By One, Into

The Input Layer Of The DNN Until All The Data
Entries Have Been Input Once To Produce An

Interimly Trained DNN

104

Has The
DNN Been Interimly Trained A Prescribed

Number Of Times
?

No

Yes
V

Identify Those Interconnections Associated With
Each Hidden Layer Of The Initially Trained DNN
Whose Current Weight Value Exceeds A Minimum

Weight Threshold

Input Each Training Data Entry, One By One, Into
The Input Layer Of The DNN Until All The Data

108 Entries Have Been Input Once To Produce A
\ Refined DNN Where After The Inputting Of Each

Data Entry, The Value Of Each Weight Associated
With Each Of The Identified Interconnections Of Each
Hidden Layer Is Set Via An Error Backpropagation
Procedure So That The Output From The Output
Layer Matches A Label Assigned To The Training

Data Entry

106\

No
DNN Been Refined A Desired Number Of

Yes FIG. 1

US. Patent Apr. 15, 2014 Sheet 2 0f3 US 8,700,552 B2

200 Identify Each Interconnection Associated With Each
\ Layer Of The Fully-Connected And Initially Trained

DNN Whose Interconnection Weight Value Does Not
Exceed A First Weight Threshold

202 "
\ Set The Value Of Each Of The Identified

Interconnections To Zero

I
204 \ Identify The Interconnection Weight Value Of The

Remaining Non-Zero Valued Interconnections Having
The Smallest Value

Input Each Training Data Entry, One By One, Into
The Input Layer Of The DNN Until All The Data

206 Entries Have Been Input Once To Produce A
\ Refined DNN Where After The Inputting Of Each

Data Entry, The Value Of Each Weight Associated
With Each Of The Interconnections Of Each Hidden
Layer Is Set Via An Error Backpropagation Procedure
So That The Output From The Output Layer Matches

A Label Assigned To The Training Data Entry

I
208 Identify Those Interconnections Associated With
_\ Each Hidden Layer Of The Last Produced Refined

DNN Whose Interconnection Weight Value Does Not
Exceed A Second Weight Threshold

I
210 Set The Value or Each or The Identified
\ Interconnections Whose Interconnection Weight

Value Does Not Exceed The Second Weight
Threshold To Zero

No
DNN Been Refined A Desired Number Of

Yes FIG. 2

US. Patent Apr. 15, 2014 Sheet 3 0f3 US 8,700,552 B2

/300
Header K304 K306

cols'(2 bytes) | index to colu'mn starts (4 bytes x # of cols)

For each column]

nsz (2 Bytes) | i1 (2 bytes) | i2 (2 Bytes) | |w(il1, j) (4 bytes) |w(i2, j) (4 bytes) | 308/ \ 310 \ 312 ‘\

FIG 3 302

‘

SIMPLIFIED COMPUTING DEVICE m

12
w r """"" "g - """""""" "~.

PROCESSING : DISPLAY : E 28 \ :
I 0 - - - — - - - - - - --~

W =. RtY'?t‘.S;’.-.= E i a:
24 J ¥ : "$95595": i

._ ' -

.- --------------- --;.' -------- --->i :' NON- E i
16 g g . : REMOVABLE . g
x ' p---..Y--J.'.14 E : STORAGE j :

I ---- ------ -- I

SYSTEM ‘ GPLKS) : E K 30 E
III I

MEMORY : : E STORAGE DEVICES :
g . I - - - - --l - - - - . . . I - . . - . - - .-I

I f t __________________________ __ \-26
l I 1 i ‘ """"""" “i l

----. - - ,_ 18

'?.----y-..---‘ II - - - . -y-‘--..‘ ’ - - - . . . --* - . . . - --\
I

: INPUT E : OUTPUT ECOMMUNICATIONS:
: DEVICE(S) : : DEVICE(S) : : INTERFACE :

_ _ _ _ _ _ _ __.0 _____ ___ _.l |________ _________'

f k 20 ? L 22 €
I I I
I I I \
I I I

v v v 10

US 8,700,552 B2
1

EXPLOITING SPARSENESS IN TRAINING
DEEP NEURAL NETWORKS

BACKGROUND

A trained deep neural network (DNN) is known to be a
powerful discriminative modeling tool, and can be used for a
variety of purposes. For example, a DNN can be combined
with a hidden Markov model (HMM) to characterize context
dependent (CD) phones as pronunciation units of speech. The
resulting hybrid CD-DNN-HMM takes advantage of the tem
porally localized discriminative modeling power of a DNN
and the sequential modeling power of a HMM. A CD-DNN
HMM can be used in speech recognition systems, handwrit
ing recognition systems, and human activity recognition/de
tection systems, among many others.
One of the key procedures in building such CD-DNN

HMMs is the training of the DNN. DNNs are computationally
demanding to train because of the large number of parameters
involved and because much of the computation is shared
across states which cannot be done on demand. Only recently
has training DNNs become feasible owing to easy access to
high-speed general purpose graphical processing units (GPG
PUs), and the development of effective DNN layer weight
initialization techniques.

SUMMARY

Deep Neural Network (DNN) training technique embodi
ments described herein generally train a DNN while exploit
ing the sparseness of non-zero hidden layer interconnection
weight values. In one exemplary DNN training technique
embodiment, a DNN is trained by initially training a fully
interconnected DNN. To this end, a set of training data entries
are accessed. Each data entry is then input one by one into the
input layer of the DNN until all the data entries have been
input once to produce an interimly trained DNN. Generally,
after inputting of each data entry, a value of each weight
associated with each interconnection of each hidden layer is
set via an error back-propagation procedure so that the output
from the output layer matches a label assigned to the training
data entry. The foregoing process is then repeated a number of
times to produce the initially trained DNN.

Those interconnections associated with each layer of the
initially trained DNN whose current weight value exceeds a
minimum weight threshold are identi?ed next. Each data
entry is then input again one by one into the input layer until
all the data entries have been input once to produce a re?ned
DNN. In this case, after the inputting of each data entry, the
value of each weight associated with each of the identi?ed
interconnections of each hidden layer is set via an error back
propagation procedure so that the output from the output
layer matches the label assigned to the training data entry.
This action of inputting each data entry is then repeated a
number of times to produce the trained DNN.

It should be noted that this Summary is provided to intro
duce a selection of concepts, in a simpli?ed form, that are
further described below in the Detailed Description. This
Summary is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended to be
used as an aid in determining the scope of the claimed subject
matter.

DESCRIPTION OF THE DRAWINGS

The speci?c features, aspects, and advantages of the dis
closure will become better understood with regard to the
following description, appended claims, and accompanying
drawings where:

20

25

30

35

40

45

50

55

60

65

2
FIG. 1 is a ?ow diagram generally outlining one imple

mentation deep neural network (DNN) training process that
exploits the sparseness of non-zero hidden layer interconnec
tion weight values.

FIG. 2 is a ?ow diagram generally outlining one imple
mentation of a process for enforcing a sparseness constraint
in a continued training of an initially trained DNN that
involves rounding interconnection weight values with mag
nitudes below a prescribed minimum weight to zero.

FIG. 3 is a diagram depicting a data structure for storing a
weight matrix having a plurality of columns and rows of
non-zero weight values associated with interconnections
between a pair of layers of a DNN.

FIG. 4 is a diagram depicting a general purpose computing
device constituting an exemplary system for implementing
DNN training technique embodiments described herein.

DETAILED DESCRIPTION

In the following description of Deep Neural Network
(DNN) training technique embodiments reference is made to
the accompanying drawings which form a part hereof, and in
which are shown, by way of illustration, speci?c embodi
ments in which the technique may be practiced. It is under
stood that other embodiments may be utilized and structural
changes may be made without departing from the scope of the
technique.
1.0 Sparseness-Exploiting Deep Neural Network Training

Deep Neural Network (DNN) training technique embodi
ments described herein generally train a DNN while exploit
ing the sparseness of non-zero hidden layer interconnection
weight values. For the purposes of this description, a com
pleted DNN is de?ned as a neural network having more than
one hidden layer.

A trained DNN can be used for a variety of purposes. For
example, as indicated previously, a DNN can model context
dependent (CD) phones and can be combined with a hidden
Markov model (HMM). The resulting hybrid CD-DNN
HMM takes advantage of the discriminative modeling power
of a DNN with the sequential modeling power of a HMM. A
CD-DNN-HMM can be used in speech recognition systems,
handwriting recognition systems, and human activity recog
nition/ detection systems, among many others. In the case of a
speech recognition system, such as is used in a voice search
task or switchboard phone-call transcription task, a
CD-DNN-HMM is used to directly model senones (tied CD
phone states) and approximates the emission probabilities of
these senones in a HMM speech recognizer. A senone repre
sents clustered (or tied) triphone states. However, it is not
intended that the DNN training technique embodiments
described herein be limited to speech recognition systems, or
any of the other above-mentioned systems. Rather, the DNN
training technique embodiments described herein can be
employed with any DNN used for any purpose.

1 .1 Deep Neural Network

DNNs can be considered as conventional multi-layer per
ceptrons (MLPs) with many hidden layers. Speci?cally, a
DNN models the posterior probability PS‘0(s|o) of a class s
given an observation vector 0, as a stack of (L+l) layers of
log-linear models. The ?rst L layers, 1:0 . . . L—l, model
hidden binary output units hZ given input vectors vZ as Ber
noulli distribution

US 8,700,552 B2
3

(1)

and the top layer L models the desired class posterior as
multinomial distribution

(2) 1
Z 1

d

Pl

where zZ(vZ):(WZ)T vZ+aZ is the activation at layer 1, WI and aZ
are the weight matrices and bias vectors at layer 1, and h]-Z and
zjl(vl)are the j-th component of hZ and zZ(vZ), respectively.

The precise modeling of sto(s|o) is infeasible as it requires
integration over all possible values of hZ across all layers. An
effective practical trick is to replace the marginalization with
a mean-?eld approximation. Given observation 0, vl:o is set
and conditional expectation Eh‘vl{hllvl}:o(zl(vl)) is chosen
as input v1+1 to the next layer, where oJ-(z):1/(1+e_zf) is sig
moid function.
1.2 Training a Deep Neural Network
DNNs, being ‘deep’ MLPs, can be trained with the well

known error back-propagation (BP) procedure. Because BP
can easily get trapped in poor local optima for deep networks,
it is helpful to ‘pretrain’ the model in a layer growing fashion
as will be described shortly. However, before describing this
pretraining it would be useful to brie?y describe BP. MLPs
are often trained with the error back-propagation procedure
with stochastic gradient ascent

(3)

for an objective function D and learning rate 6. Typically, the
objective is to maximize the total log posterior probability
over the T training samples O:{o(t)} with ground-truth labels
s(t), i.e.

D(O)IEF1TlOg Psio(s(l)10(l)), (4)

then the gradients are

with error signals eZ(t):8D/8vl+l(t) as back-propagated from
networks 1+1 and above; network l’s output-nonlinearity’s
derivative 001(t) if present; component-wise derivatives

O'j-(z):0j(z)-(l—0j(z))and (log softmax)'j(z):6s(,)J-—

and Kronecker delta 6.

20

25

30

35

40

45

50

55

60

65

4
1.3 Exploiting Sparseness
The DNN training technique embodiments described

herein operate as a computer-implemented process for train
ing a DNN. This can involve employing a computer-readable
storage medium having computer-executable instructions
stored thereon for achieving the training. Suitable computing
devices and storage media will be described in more detail in
the Exemplary Operating Environments section to follow.

It has been found that recognition accuracy of DNNs
increases with the number of hidden units and layers, if the
training process is controlled by a held-out set. Resulting
optimal models, however, are large. Fortunately, inspection
of fully connected DNNs after the training has shown that a
large portion of the interconnections have very small weights.
For example, the distribution of weight magnitudes of a typi
cal 7-hidden-layer DNN has been found to have about 87% of
their interconnection weight magnitudes below 0.2 and 70%
of their interconnection weight magnitudes below 0.1. As
such, it can be advantageous to reduce the DNN model size by
removing interconnections with small weight magnitudes so
that deeper and wider DNNs can be employed more effec
tively. Note that similar observations patterns were not found
in the case of the DNN bias parameters. This is expected since
nonzero bias terms indicate the shift of hyperplanes from the
origin. Since the number of bias parameters is only about
1/2000 of the total number of parameters, keeping bias
parameters intact does not affect the ?nal model size in a
noticeable way.
1.3.1 Convex Constraint Formulation

Generally, DNN training technique embodiments
described herein are formulated as a multi-obj ective optimi
zation problem in which the aforementioned log conditional
probability D is maximized, while at the same time the num
ber of non-zero weights is minimized. This two-objective
optimization problem can be converted into a single objective
optimization problem with convex constraint formulations.
More particularly, the log conditional probability D is sub

ject to the constraint

HWHOSq (6)

where q is a threshold value for the maximal number of
nonzero weights allowed.

This constrained optimization problem is hard to solve.
However, an approximate solution can be found following
two observations: First, after sweeping through the full train
ing set several times the weights become relatively stablei
i.e., they tend to remain either large or small magnitudes.
Second, in a stabilized model, the importance of the connec
tion is approximated well by the magnitudes of the weights
(times the magnitudes of the corresponding input values, but
these are relatively uniform within each layer since on the
input layer, features are typically normalized to zero-mean
and unit-variance, and hidden-layer values are probabilities).

In simpli?ed terms, this leads to a simple yet effective
procedure for training a “sparse” DNN. Generally, a fully
connected DNN is trained by sweeping through the full train
ing set a number of times. Then, for the most part, only the
interconnections whose weight magnitudes are in top q are
considered in further training. Other interconnections are
removed from the DNN. It is noted that the training is con
tinued after pruning the interconnections because the log
conditional probability value D is reduced due to connection
pruning, especially when the degree of sparseness is high
(i.e., q is small). However, the continued DNN training tends
to converge much faster than the original training.
More particularly, referring to FIG. 1, in one implementa

tion, the DNN training involves using a computing device

US 8,700,552 B2
5

(such as one described in the Exemplary Operating Environ
ments section to follow) to execute the following process
actions. First, a fully interconnected DNN is initially trained
by accessing a set of training data entries (process action
100). This set of training data entries could correspond to a
so-called mini-batch as is known in the neural network train
ing arts. In addition, a fully interconnected DNN is de?ned as
one including an input layer into which training data is input,
an output layer from which an output is generated, and a
plurality of hidden layers. Each data entry is then input one by
one into the input layer of the DNN until all the data entries
have been input once to produce an interimly trained DNN
(process action 102). Generally, after inputting of each data
entry, a value of each weight associated with each intercon
nection of each hidden layer is set via an error back-propa
gation procedure (such as described previously) so that the
output from the output layer matches a label assigned to the
training data entry. For example, when the DNN being trained
is part of a previously-described CD-DNN-HMM used in
speech recognition systems, accessing the set of training data
entries involves accessing a set of speech frames each of
which has a corresponding senone label assigned to it. In
addition, inputting each speech frame into the input layer
until all the data entries have been input once to produce the
interimly trained DNN or a re?ned DNN, involves, after the
inputting of each speech frame, setting the values of said
weights associated with the interconnections of each hidden
layer via the error back-propagation procedure so that the
output from the output layer matches the senone label
assigned to the speech frame.

The foregoing process is then repeated a number of times to
produce an initially trained DNN. To this end, it is determined
if process actions 100 and 102 have been repeated a pre
scribed number of times (process action 104). If not, then
actions 100 and 102 are repeated. This continues until it is
determined the process has been repeated the prescribed
number of times. In one implementation, the prescribed num
ber of times actions 100 and 102 are repeated to establish the
initially trained DNN ranges between 5 and 50 which is task
dependent.

Next, those interconnections associated with each layer of
the initially trained DNN whose current weight value exceeds
a minimum weight threshold are identi?ed (process action
106). In one implementation, the minimum weight threshold
is established as a value that results in only a prescribed
maximum number of interconnections being considered
when setting interconnection weight values via the error
back-propagation procedure. In another implementation, the
prescribed maximum number of interconnections ranges
between 10% and 40% of all interconnections.

The aforementioned continued training is then performed
on the pruned DNN. More particularly, referring to FIG. 1,
each data entry is input one by one into the input layer until all
the data entries have been input once to produce a re?ned
DNN (process action 108). In this case, after the inputting of
each data entry, the value of each weight associated with each
of the identi?ed interconnections of each hidden layer (i.e.,
the ones exceeding the minimum weight threshold) is set via
an error back-propagation procedure so that the output from
the output layer matches a label assigned to the training data
entry. When the DNN being trained is part of a previously
described speech recognition CD-DNN-HMM, inputting
each speech frame into the input layer until all the data entries
have been input once involves, after the inputting of each
speech frame, setting the values of said weights associated
with the previously identi?ed interconnections of each hid
den layer via the error back-propagation procedure to pro

20

25

30

35

40

45

50

55

60

65

6
duce an output from the output layer that corresponds to the
senone label associated with the speech frame.

Process action 108 is then repeated a number of times to
produce the trained DNN. To this end, it is determined if
process action 108 has been repeated a desired number of
times (process action 110). If not, then action 108 is repeated.
This continues until it is determined the process has been
repeated the desired number of times. In one implementation,
the desired number of times action 108 is repeated is estab
lished by determining when the interconnection weights
associated with the each hidden layer do not vary between
iterations by more than a prescribed training threshold. In
another implementation, process action 108 is repeated a
prescribed number of times (e.g., between 5 and 50 which is
task dependent).
1.3.2 Sparseness Constraint Enforcement

It is noted that it is advantageous to enforce the sparseness
constraint of Eq (6) to a large extent in the continued training
of the “sparse” DNN. One way of keeping the same sparse
connections (and thus same sparseness constraint), is to
employ a mask where all the pruned interconnections are
recorded. The masking approach is cleaner and prevents con
sideration of all the pruned interconnections in the continued
training (and so strictly enforcing the sparseness constraint),
but it also requires storage of a huge masking matrix. Another
way to enforce the sparseness constraint in the continued
training involves rounding interconnection weight values
with magnitude below a prescribed minimum weight thresh
old to zero (e.g., min{0.02, 0/2} where 0 is the minimal
weight magnitude that survived the pruning). Note that only
weights smaller than the minimum weight threshold are
rounded down to zero--instead of those smaller than 6. This is
because the weights may shrink and be suddenly removed,
and it is desirable to keep the effect of this removal to mini
mum without sacri?cing the degree of sparseness.

With this latter scenario, if a previously eliminated inter
connection exceeds the minimum weight threshold, then it
would be considered once again. Though this technically
violates the sparseness constrain it has been found that it is a
rare occurrence. Similarly, if a non-eliminated interconnec
tion does not exceed the minimum weight threshold, it would
be eliminated from consideration in the next training iteration
(although it could feasibly exceed the threshold in a future
training iteration and be considered once again). This latter
scenario also technically violates the sparseness constrain.
However, again it was found to be a rare occurrence.

In view of the foregoing, FIG. 2 outlines one implementa
tion of a process to enforce the sparseness constraint in the
continued training that involves rounding interconnection
weight values with magnitudes below a prescribed minimum
weight to zero. More particularly, a computing device (such
as one described in the Exemplary Operating Environments
section to follow) is employed to identify each interconnec
tion associated with each layer of the fully-connected and
initially trained DNN whose interconnection weight value
does not exceed a ?rst weight threshold (process action 200).
In one implementation, the ?rst minimum weight threshold is
established as a value that results in only a prescribed maxi
mum number of interconnections being considered when set
ting interconnection weight values via the error back-propa
gation procedure. In another implementation, the prescribed
maximum number of interconnections ranges between 10%
and 40% of all interconnections.
The value of each of these identi?ed interconnections is

then set to zero (process action 202), and the interconnection
weight value of the remaining non-zero valued interconnec
tions having the smallest value is identi?ed (process action

US 8,700,552 B2
7

204). Each data entry is input one by one into the input layer
until all the data entries have been input once to produce a
current re?ned DNN (process action 206). In this case, after
the inputting of each data entry, the values of the weights
associated with the interconnections of each hidden layer are
set via the error back-propagation procedure so that the output
from the output layer matches a label assigned to the training
data entry. As before, when the DNN being trained is part of
a speech recognition CD-DNN-HMM, inputting each speech
frame into the input layer until all the data entries have been
input once involves, after the inputting of each speech frame,
setting the values of said weights associated with the inter
connections of each hidden layer via the error back-propaga
tion procedure to produce an output from the output layer that
corresponds to the senone label associated with the speech
frame.

Next, those interconnections associated with each hidden
layer of the last produced re?ned DNN whose interconnec
tion weight value does not exceed a second weight threshold
are identi?ed (process action 208). In one implementation,
the second weight threshold is the lesser of a prescribed
minimum weight value (e.g., 0.02) or a prescribed percentage
of the previously-identi?ed smallest non-zero interconnec
tion weight value (which percentage for example can range
between 20% and 80%). In tested embodiments, 50 percent of
the identi?ed smallest non-zero interconnection weight value
was used.

The value of each of the identi?ed interconnections whose
interconnection weight value does not exceed the second
weight threshold is then set to zero (process action 210).
Process actions 206 through 210 are then repeated a number
of times to produce the trained DNN. To this end, it is deter
mined if process actions 206 through 210 have been repeated
a desired number of times (process action 212). If not, then
actions 206 through 210 are repeated. This continues until it
is determined the process has been repeated the desired num
ber of times. In one implementation, the desired number of
times actions 206 through 210 are repeated is established by
determining when the interconnection weights associated
with the each hidden layer do not vary between iterations by
more than a prescribed training threshold. In another imple
mentation, process actions 206 through 210 are repeated a
prescribed number of times (e.g., between 5 and 50 which is
task dependent).
1.4 Data Structure
The sparse weights learned in the DNN training technique

embodiments described herein generally have random pat
terns. Data structures to effectively exploit the sparse weights
to reduce model size and to speed up decoding calculations
(WTv) will now be described. In general, it is advantageous to
only store and calculate with the nonzero-weights. To speed
up the calculation, in one implementation, the indexes and
actual weights are stored in adjacent groups so that they can
be retrieved ef?ciently with good locality. A slightly different
but almost equally ef?cient data structure implementation,
pairs of indexes and weights are grouped. With the proposed
data structure, each column can be multiplied with the input
vector in parallel. To further speed up the calculation, paral
lelization can also be exploited within each column.
One exemplary implementation of such a data structure is

depicted in FIG. 3. In this implementation, a computer-read
able storage medium is used to store data for access by a deep
neural network (DNN) training application program being
executed on a computer. The aforementioned data structure is
stored in this storage medium and has information used by
said DNN training application program. This information
generally represents a weight matrix having a plurality of

20

25

30

35

40

45

50

55

60

65

8
columns and rows of weight values associated with intercon
nections between a pair of layers of the DNN. More particu
larly, this data structure includes a header data structure ele
ment 300 and a plurality of column data structure elements
302. The header data structure element 300 includes a total
columns number 304 representing the number of columns of
the weight matrix. This number 304 is followed by a series of
column index numbers 306, each of which identi?es a loca
tion in the data structure where information corresponding to
a different one of the plurality of weight matrix columns
begins. Each of the column data structure elements 302 gen
erally includes information corresponding to a different one
of the plurality of weight matrix columns. More particularly,
each of the column data structure elements 302 includes a
total non-zero weight value number 308 representing the
number of non-zero weight values in the column data struc
ture element. This is followed by a series of row identi?cation
numbers 310, each of which identi?es a row of the column of
the weight matrix corresponding to the column data structure
element that is associated with a non-zero weight value.
These row identi?cation numbers 310 are then followed by a
series of non-zero weight values 312, each of which is
assigned to a different one of the rows of the column of the
weight matrix corresponding to the column data structure
element that is associated with a non-zero weight value.
Note that the data structure shown in FIG. 3 is just one

exemplary implementation. The data structure depends
heavily on the hardware architecture chosen and the trade-off
between storage size and computation speed. For example,
the index block iks can be further compressed by keeping the
delta indexes (requires only one byte per index). Furthermore,
if streaming SIMD extension (SSE) instructions are used, it is
possible to group frames into batches of four and store non
zero weights row-?rst to achieve similar computation
speedup.
The saving of storage from using the data structure shown

in FIG. 3 is obvious. For an N><M single-precision matrix with
x % nonzero-weights, the normal matrix requires 4><N><M
bytes. With the data structure of FIG. 3, it requires 2+6><M
(1 +x %><N) bytes, which takes less space when x %<2/3— l/N.
The speedup in calculation depends heavily on the imple

mentation and hardware used. For a naive matrix-vector mul
tiplication (i.e., SSE is not used), it requires N><M multipli
cations and summation, and 2><N><M memory accesses. With
the data structure of FIG. 3, it requires only x %><N><M mul
tiplications and summations, and 3><x %><N><M memory
accesses.

2.0 Exemplary Operating Environments
The DNN training technique embodiments described

herein are operational within numerous types of general pur
pose or special purpose computing system environments or
con?gurations. FIG. 4 illustrates a simpli?ed example of a
general-purpose computer system on which various embodi
ments and elements of the DNN training technique embodi
ments, as described herein, may be implemented. It should be
noted that any boxes that are represented by broken or dashed
lines in FIG. 4 represent alternate embodiments of the sim
pli?ed computing device, and that any or all of these alternate
embodiments, as described below, may be used in combina
tion with other alternate embodiments that are described
throughout this document.

For example, FIG. 4 shows a general system diagram
showing a simpli?ed computing device 10. Such computing
devices can be typically be found in devices having at least
some minimum computational capability, including, but not
limited to, personal computers, server computers, hand-held
computing devices, laptop or mobile computers, communi

US 8,700,552 B2

cations devices such as cell phones and PDA’s, multiproces
sor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, mini
computers, mainframe computers, audio or video media play
ers, etc.

To allow a device to implement the DNN training tech
nique embodiments described herein, the device should have
a suf?cient computational capability and system memory to
enable basic computational operations. In particular, as illus
trated by FIG. 4, the computational capability is generally
illustrated by one or more processing unit(s) 12, and may also
include one or more GPUs 14, either or both in communica
tion with system memory 16. Note that the processing unit(s)
12 of the general computing device may be specialized micro
processors, such as a DSP, aVLIW, or other micro-controller,
or can be conventional CPUs having one or more processing
cores, including specialized GPU-based cores in a multi-core
CPU.

In addition, the simpli?ed computing device of FIG. 4 may
also include other components, such as, for example, a com
munications interface 18. The simpli?ed computing device of
FIG. 4 may also include one or more conventional computer
input devices 20 (e.g., pointing devices, keyboards, audio
input devices, video input devices, haptic input devices,
devices for receiving wired or wireless data transmissions,
etc.). The simpli?ed computing device of FIG. 4 may also
include other optional components, such as, for example, one
or more conventional display device(s) 24 and other computer
output devices 22 (e.g., audio output devices, video output
devices, devices for transmitting wired or wireless data trans
missions, etc.). Note that typical communications interfaces
18, input devices 20, output devices 22, and storage devices
26 for general-purpose computers are well known to those
skilled in the art, and will not be described in detail herein.
The simpli?ed computing device of FIG. 4 may also

include a variety of computer readable media. Computer
readable media can be any available media that can be
accessed by computer 10 via storage devices 26 and includes
both volatile and nonvolatile media that is either removable
28 and/or non-removable 30, for storage of information such
as computer-readable or computer-executable instructions,
data structures, program modules, or other data. By way of
example, and not limitation, computer readable media may
comprise computer storage media and communication
media. Computer storage media includes, but is not limited
to, computer or machine readable media or storage devices
such as DVD’s, CD’s, ?oppy disks, tape drives, hard drives,
optical drives, solid state memory devices, RAM, ROM,
EEPROM, ?ash memory or other memory technology, mag
netic cassettes, magnetic tapes, magnetic disk storage, or
other magnetic storage devices, or any other device which can
be used to store the desired information and which can be
accessed by one or more computing devices.

Retention of information such as computer-readable or
computer-executable instructions, data structures, program
modules, etc., can also be accomplished by using any of a
variety of the aforementioned communication media to
encode one or more modulated data signals or carrier waves,
or other transport mechanisms or communications protocols,
and includes any wired or wireless information delivery
mechanism. Note that the terms “modulated data signal” or
“carrier wave” generally refer to a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. For example, communica
tion media includes wired media such as a wired network or
direct-wired connection carrying one or more modulated data
signals, and wireless media such as acoustic, RF, infrared,

20

25

30

35

40

45

50

55

60

65

10
laser, and other wireless media for transmitting and/ or receiv
ing one or more modulated data signals or carrier waves.
Combinations of the any of the above should also be included
within the scope of communication media.

Further, software, programs, and/ or computer program
products embodying some or all of the various DNN training
technique embodiments described herein, orportions thereof,
may be stored, received, transmitted, or read from any desired
combination of computer or machine readable media or stor
age devices and communication media in the form of com
puter executable instructions or other data structures.

Finally, the DNN training technique embodiments
described herein may be further described in the general
context of computer-executable instructions, such as program
modules, being executed by a computing device. Generally,
program modules include routines, programs, objects, com
ponents, data structures, etc., that perform particular tasks or
implement particular abstract data types. The embodiments
described herein may also be practiced in distributed com
puting environments where tasks are performed by one or
more remote processing devices, or within a cloud of one or
more devices, that are linked through one or more communi
cations networks. In a distributed computing environment,
program modules may be located in both local and remote
computer storage media including media storage devices.
Still further, the aforementioned instructions may be imple
mented, in part or in whole, as hardware logic circuits, which
may or may not include a processor.
3.0 Other Embodiments

It is noted that any or all of the aforementioned embodi
ments throughout the description may be used in any combi
nation desired to form additional hybrid embodiments. In
addition, although the subject matter has been described in
language speci?c to structural features and/or methodologi
cal acts, it is to be understood that the subject matter de?ned
in the appended claims is not necessarily limited to the spe
ci?c features or acts described above. Rather, the speci?c
features and acts described above are disclosed as example
forms of implementing the claims.

Wherefore, what is claimed is:
1. A computer-implemented process for training a deep

neural network (DNN), comprising:
using a computer to perform the following process actions:
(a) initially training a fully interconnected DNN compris

ing an input layer into which training data is input, an
output layer from which an output is generated, and a
plurality of hidden layers, wherein said training com
prises,
(i) accessing a set of training data entries,
(ii) inputting each data entry of said set one by one into

the input layer until all the data entries have been input
once to produce an interimly trained DNN, such that
after the inputting of each data entry, a value of each
weight associated with each interconnection of each
hidden layer are set via an error back-propagation
procedure so that the output from the output layer
matches a label assigned to the training data entry,

(iii) repeating actions (i) and (ii) a number of times to
establish an initially trained DNN;

(b) identifying each interconnection associated with each
layer of the initially trained DNN whose interconnection
weight value does not exceed a ?rst weight threshold;

(c) setting the value of each of identi?ed interconnection to
zero;

(d) inputting each data entry of said set one by one into the
input layer until all the data entries have been input once
to produce a current re?ned DNN, such that after the

US 8,700,552 B2
11

inputting of each data entry, the values of the weights
associated with the interconnections of each hidden
layer are set via an error back-propagation procedure so
that the output from the output layer matches the label
assigned to the training data entry;

(e) identifying those interconnections associated with each
hidden layer of the last produced re?ned DNN whose
interconnection weight value does not exceed a second

weight threshold;
(f) setting the value of each of the identi?ed interconnec

tions whose interconnection weight value does not
exceed the second weight threshold to zero; and

(g) repeating actions (d) through (f) a number of times to
produce said trained DNN.

2. The process of claim 1, further comprising the process
actions of:

after setting the value of each of identi?ed interconnection
whose interconnection weight value does not exceed the
?rst weight threshold to zero, identifying the intercon
nection weight value having the smallest non-zero
value; and

establishing the second weight threshold to be the lesser of
a prescribed minimum weight value or a prescribed per
centage of the identi?ed smallest non-zero interconnec
tion weight value.

3. The process of claim 2, wherein the prescribed minimum
weight value ranges between 0.01 and 0.8.

4. The process of claim 2, wherein the prescribed percent
age of the identi?ed smallest non-zero interconnection
weight value ranges between 20% and 80%.

5. The process of claim 1, wherein the ?rst weight thresh
old is established as a value that results in only a prescribed
maximum number of non-zero-weighted interconnections
once each of identi?ed interconnection whose interconnec
tion weight value does not exceed the ?rst weight threshold
are set to zero.

6. The process of claim 5, wherein the prescribed maxi
mum number of non-zero-weighted interconnections ranges
between 10% and 40%.

7. The process of claim 1, wherein the number of times
actions (a)(i) and (a)(ii) are repeated to establish the initially
trained DNN ranges between 5 and 50.

8. The process of claim 1, wherein the number of times
actions (d) through (f) are repeated to establish the trained
DNN ranges between 5 and 50.

9. The process of claim 1, wherein the number of times
actions (d) through (f) are repeated to establish the initially
trained DNN corresponds to the number of times it takes for
the interconnection weights associated with each hidden
layer to not vary between iterations by more than a prescribed
training threshold.

10. The process of claim 1, wherein the process action of
accessing the set of training data entries, comprises accessing
a set of training data entries each data entry of which has a
corresponding label assigned thereto, and wherein the pro
cess actions of inputting each data entry of said set one by one
into the input layer until all the data entries have been input
once to produce the interimly trained DNN or a re?ned DNN,
comprises, after the inputting of each data entry, setting the
values of said weights associated with the interconnections of
each hidden layer via the error back-propagation procedure
so that the output from the output layer matches a label
assigned to the training data entry.

11. The process of claim 10, wherein the process action of
accessing the set of training data entries each data entry of

20

25

30

35

40

45

50

55

60

65

12
which has a corresponding label assigned thereto, comprises
accessing a set of speech frames each of which corresponds to
a senone label.

12. A computer-implemented process for training a deep
neural network (DNN), comprising:

using a computer to perform the following process actions:
(a) initially training a fully interconnected DNN compris

ing an input layer into which training data is input, an
output layer from which an output is generated, and a
plurality of hidden layers, wherein said training com
prises,
(i) accessing a set of training data entries,
(ii) inputting each data entry of said set one by one into

the input layer until all the data entries have been input
once to produce an interimly trained DNN, such that
after the inputting of each data entry, a value of each
weight associated with each interconnection of each
hidden layer are set via an error back-propagation
procedure so that the output from the output layer
matches a label assigned to the training data entry,

(iii) repeating actions (i) and (ii) a number of times to
establish an initially trained DNN;

(b) identifying those interconnections associated with each
layer of the initially trained DNN whose current weight
value exceeds a minimum weight threshold;

(c) inputting each data entry of said set one by one into the
input layer until all the data entries have been input once
to produce a re?ned DNN, such that after the inputting of
each data entry, the value of each weight associated with
each of the identi?ed interconnections of each hidden
layer is set via an error back-propagation procedure so
that the output from the output layer matches the label
assigned to the training data entry; and

(d) repeating action (c) a number of times to produce said
trained DNN.

13. The process of claim 12, wherein the minimum weight
threshold is established as a value that results in only a pre
scribed maximum number of interconnections being consid
ered when setting interconnection weight values via the error
back-propagation procedure.

14. The process of claim 13, wherein the prescribed maxi
mum number of interconnections ranges between 10% and
40% of all interconnections.

15. The process of claim 12, wherein the number of times
actions (a)(i) and (a)(ii) are repeated to establish the initially
trained DNN ranges between 5 and 50.

16. The process of claim 12, wherein the number of times
action (c) is repeated to establish the trained DNN ranges
between 5 and 50.

17. The process of claim 12, wherein the number of times
action (c) is repeated to establish the initially trained DNN
corresponds to the number of times it takes for the intercon
nection weights associated with each hidden layer to not vary
between iterations by more than a prescribed training thresh
old.

18. The process of claim 12, wherein the process action of
accessing the set of training data entries, comprises accessing
a set of training data entries each data entry of which has a
corresponding label assigned thereto, and wherein the pro
cess actions of inputting each data entry of said set one by one
into the input layer until all the data entries have been input
once to produce the interimly trained DNN or a re?ned DNN,
comprises, after the inputting of each data entry, setting the
values of said weights associated with the interconnections of
each hidden layer via the error back-propagation procedure
so that the output from the output layer matches a label
assigned to the training data entry.

US 8,700,552 B2
13

19. The process of claim 18, wherein the process action of
accessing the set of training data entries each data entry of
which has a corresponding label assigned thereto, comprises
accessing a set of speech frames each of which corresponds to
a senone label.

20. A computer storage medium for storing data for access
by a deep neural network (DNN) training application pro
gram being executed on a computer, comprising:

a data structure stored in said storage medium, said data
structure comprising information used by said DNN
training application program, said information repre
senting a weight matrix having a plurality of columns
and rows of weight values associated with interconnec
tions between a pair of layers of the DNN, said data
structure comprising:
a header data structure element comprising,

a total columns number representing the number of
columns of said weight matrix, followed by,

a series of column index numbers each of which iden
ti?es a location in the data structure where infor
mation corresponding to a different one of the plu
rality of weight matrix columns begins; and

a plurality of column data structure elements each of
which comprises information corresponding to a dif

20

14
ferent one of the plurality of weight matrix columns,
each of said column data structure elements compris
ing,
a total non-zero weight value number representing the
number of non-zero weight values in the column
data structure element, followed by,

a series of row identi?cation numbers each of which
identi?es a row of the column of the weight matrix
corresponding to the column data structure element
that is associated with a non-zero weight value,
followed by,

a series of non-zero weight values each of which is
assigned to a different one of the rows of the column
of the weight matrix corresponding to the column data
structure element that is associated with a non-zero
weight value; and wherein

said computer storage media consists of at least one of
DVD’s, or CD’s, or ?oppy disks, or tape drives, or hard
drives, or optical drives, or solid state memory devices,
or RAM, or ROM, or EEPROM, or ?ash memory, or
magnetic cassettes, or magnetic tapes, or magnetic disk
storage, or other magnetic storage devices.

* * * * *

