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VIDEO REGISTRATION AND IMAGE
SEQUENCE STITCHING

BACKGROUND

1. Technical Field

The invention is related to construction of mosaiced pan-
oramic images, and in particular, to a technique for building a
“match” structure of image correspondences which is opti-
mized to align the images for “registering” large numbers of
images into an underlying panoramic representation having
static and/or dynamic components.

2. Related Art

In general, a mosaic panoramic image is an image that has
been expanded in one or more dimensions by combining
multiple overlapping image frames to generate the panorama.
As aresult, the panoramic image is typically larger than the
size that a conventional image capture device (such as a
digital still or video camera) is capable of capturing ina single
image frame.

A number of conventional techniques have been developed
to generate such panoramic images. For example, the basic
approach is to simply take a plurality of regular photographic
or video images in order to cover the entirety of the desired
viewing space. These images are then aligned and compos-
ited into complete panoramic images using any of a number
of'conventional image “mosaicing” or “stitching” algorithms.

For example, one conventional mosaicing scheme has
demonstrated how panoramas contained in a set of unordered
images can be automatically identified and stitched. These
techniques allow a user to take a number of images with a still
camera, identify clusters of images which came from the
same panorama, and then stitch each cluster into a panorama.
For example, one such scheme first compares “point features”
within pairs of images to generate a mesh of matches. A
connected component approach is used to identify separate
panoramas. Images in each cluster are then aligned by mini-
mizing measurement errors. Lastly, images in each cluster are
warped onto a compositing surface and blended to generate
the output panorama.

When applied to relatively small data sets, such as a cluster
of images captured by a digital still camera, many conven-
tional mosaicing schemes are capable of rapidly stitching
related image frames to generate mosaic images. However,
when data sets become very large, the generation of mosaics
becomes a more complicated process. For example, with a
still camera, users typically only take a few or at a few dozen
images to create a panorama. However, with a video camera,
it is easy to generate thousands of images over a very short
period. For example, at a typically video speed of only 30
frames per second, a total of 1800 image frames will be
generated in only one minute.

Unfortunately, the matching techniques performed by
many mosaicing schemes are often impractical for matching
such large numbers of images for generating a single mosaic
panorama for those images. Consequently, work has been
done to provide efficient techniques for stitching or mosaic-
ing larger data sets such as video recordings. Whilethe idea of
stitching panoramas from videos is not new, the way in which
such mosaics are constructed, the underlying camera motion
models employed, and the details of the algorithms vary
considerably.

For example, one conventional scheme for generating
mosaic images from video sequences uses an affine motion
model for an image resolution enhancement application as a
function of received video frames. Another conventional
video mosaicing scheme uses an eight parameter perspective
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transformation model. Yet another conventional video mosa-
icing scheme uses a “manifold projection” approach in com-
bination with a simple translation only camera motion model.
This approach results in a fast algorithm for video stitching in
which narrow strips of pixels from the underlying scene are
used to form a composite panoramic image. Further, the use
of a translation only camera model avoids the necessity of
computing more complex 3D camera motions as do a number
of conventional mosaicing schemes.

Other conventional video stitching schemes operate by
initially only stitching together adjacent frames of the video
sequence, thereby making the matching problem linear in the
number of images. However, such techniques ignore matches
due to the camera crossing back over its path. By not includ-
ing these matches, components of the panorama can drift due
to error accumulation. However, some conventional mosaic-
ing schemes partially compensate for this problem by inter-
leaving the matching process and alignment process. Specifi-
cally, after each new image is aligned to its temporal
neighbor, spatial neighbors are identified and used to refine
the orientation estimate of the new image.

A similar interleaved matching strategy was employed by
another conventional mosaicing scheme which generates
image structure from motion analysis. In other conventional
structure from motion work, a strategy for frame “decima-
tion” is presented for the extraction of structure and motion
from hand held video sequences. This strategy identifies
“unnecessary” frames for removal from subsequent compu-
tation by using a sharpness measure to order frames for con-
sideration for removal as a function of a global motion model.
A threshold based on a motion correlation coefficient is then
employed. This strategy is employed as a preprocessing step
within a larger system for structure from motion in which a
tree of trifocal tensors is used. However, one problem with
such schemes is that data is lost whenever “unnecessary”
image frames are discarded.

Another conventional video mosaicing scheme generally
operates by interleaving image matching and orientation esti-
mation steps by making the assumption that temporally adja-
cent images are spatially adjacent. This scheme also makes
the assumption that any loops in the camera path are small
enough that accumulated error, or drift, can be ignored. How-
ever, such assumptions can be considered overly restrictive in
that they constrain the ability of users to capture video record-
ings. Further, this scheme does not directly handle breaks in
the matching, as would occur with multiple videos of the
same panorama. In addition, such interleaving of the match-
ing and alignment requires that the images be aligned in the
same order as the video.

Another problem with the application of automatic high-
quality stitching to video sequences is the relatively high
computational costs associated with stitching large numbers
of'images, and the resulting simplifications in motion models
or restrictive assumptions required to make such algorithnis
run in a reasonable time. Existing methods for constructing
large panoramas in a “batch” fashion from static images can
be quite robust. However, they are typically not sufficiently
efficient for aligning and stitching all the frames of a high
quality video sequence in a reasonable amount of time. While
fast techniques do exist for stitching video, such methods
typically use more restricted motion models and produce final
panoramic representations that are less accurate than static
image-based batch processing approaches.

At least one conventional video mosaicing scheme par-
tially addresses some of these issues. For example, one con-
ventional scheme, referred to as “VideoBrush™,” provides a
near-real-time preview of a panoramic image constructed
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from images captured by a video camera. In general, the
VideoBrush™ system provides techniques for 1D and 2D
video mosaicing using parametric alignment which includes
videos captured with an approximately fixed camera location,
or an arbitrarily moving camera capturing an approximately
planar scene. As a result, users are constrained in how they
capture videos for use by this conventional technique.

Another problem with many conventional mosaicing
schemes is that they operate using post-hoc processing of
recorded images after the entire set of images has been cap-
tured. As a result, one problem is that the user never really
knows for sure that sufficient coverage of the scene has been
achieved to ensure that the desired panorama can be con-
structed from the set of captured image frames until the pan-
orama has actually been generated at some later time. As a
consequence it can be hard for users to see “the big picture.”

In particular, using conventional image stitching schemes,
it is not until the images are uploaded from the camera to the
computing device (such as a PC-type computer, or the like)
that users find that the resulting panorama is flawed. For
example, gaps will occur in the panorama if users miss one or
more spots. Gaps will also occur if the stitching program is
unable to insert one or more of the captured images into the
panorama, e.g., due to too little overlap between pictures, due
to a lack of texture, due to problems with image focus (image
too blurry), etc. Further, while gaps at the edge of a panorama
can be removed by cropping the panorama, this may cause
other desired image elements to be lost outside the cropping
boundaries. In the worst case, what was intended to be a
single panorama can end up as multiple unconnected (and
odd-shaped) pieces of the overall image.

Yet another problem with conventional post-processing
approaches involves the issue of “ghosting” where objects
have moved from one frame to the next while the images for
the panorama were being taken. While users may be able to
identify flaws within a picture (e.g., out of focus) using the
view finder, and retake it, flaws between photos, such as
ghosting or differences in lighting etc. are less likely to be
discovered while shooting. Unfortunately, by the time users
notice such flaws, it is typically too late to retake the missing
or flawed image frames.

Users can reduce the risk of flaws such as gaps and ghost-
ing by using a larger overlap between images and by taking
multiple copies of areas suspected of being subject to ghost-
ing. This redundancy-based approach, however, is costly is
terms of time and especially in terms of storage space (as
more pictures are taken) and it still cannot guarantee success-
ful generation of the resulting panoramic images.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

A “Keyframe Stitcher” provides an efficient technique for
building mosaic panoramic images by registering or aligning
sequences of image frames into an underlying panoramic
representation. The techniques provided by the Keyframe
Stitcher are scalable such that large panoramas may be easily
constructed by registering large numbers of sequential image
frames, such as image sequences captured by still or video
cameras, or other image sources. Further, in various embodi-
ments, the Keyframe Stitcher is sufficiently optimized to
allow for real-time, or near-real-time, stitching of images.
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Consequently, users are able to “brush” a scene with a camera
to create mosaic images of the scene in real-time as the
images are being captured. Consequently, users are also able
to correct errors or gaps in the resulting panorama by simply
brushing over any areas of the mosaic exhibiting problems.

In general, in one embodiment, the Keyframe Stitcher
operates by extracting “features” or “interest points” from
every new image frame, with a first image frame being iden-
tified as a “keyframe.” Fach subsequent frame is then
matched (via the features) to the previous frame and to the
preceding keyframe. New keyframes are then identified from
the incoming image frames whenever an estimated frame
overlap drops below a minimum overlap threshold. Alter-
nately, if a predetermined maximum number of frames has
been exceeded without identifying a new keyframe as a func-
tion of image frame overlap, then the current frame is identi-
fied as a new keyframe.

Then, each frame is also matched to the next or “forward”
keytrame. Every keyframe is then matched to all other key-
frames to construct a keyframe “mesh.” All of the match
measurements between images frames, image frames and
keytrames, and between keyframes are then used to construct
an image “match structure.” This match structure is then used
to estimate optimal image orientations for the image frames,
with the image orientations then being used to construct the
image mosaic from the sequence of image frames.

In other words, the Keyframe Stitcher allows a very large
number of image frames to be aligned in real-time or near-
real-time by building a “match structure” of image correspon-
dences which is then optimized to align the images. Note that
in one embodiment, optimization of image correspondences
is accomplished using bundle adjustment techniques. Further,
in one embodiment, assuming that there is finite number of
keytrames, “real-time” construction of mosaic images is pro-
vided while images are being captured by performing incre-
mental optimization of “blocks” of images corresponding to
keytrame pairs.

As noted above, the Keyframe Stitcher described herein
provides an efficient technique for building static mosaic
panoramic images. In addition, the Keyframe Stitcher is also
capable of outputting intermediate “warped” video frames
which are mapped as “overlays” to the static panorama. Con-
sequently, the Keyframe Stitcher is capable of constructing
“animated panoramas” for action sequences occurring within
a scene. In this scenario the user can construct a “background
panorama” by panning across a scene. Then, any action
occurring within a particular part of the overall mosaic scene
can be filmed and the resulting warped images can be inserted
as overlays into the static panorama, producing an “animated
panorama.” One advantage of this option is that it allows for
large compression of video images by creating a static portion
of'avideo sequence, and only animating the relatively smaller
portions wherein action is occurring.

In view of the above summary, it is clear that the Keyframe
Stitcher described herein provides a unique system and
method for generating still and/or animated panoramic
mosaic images of a scene. In addition to the just described
benefits, other advantages of the Keyframe Stitcher will
become apparent from the detailed description which follows
hereinafter when taken in conjunction with the accompany-
ing drawing figures.

DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
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publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The specific features, aspects, and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accompa-
nying drawings where:

FIG. 1 is a general system diagram depicting a general-
purpose computing device constituting an exemplary system
for implementing a Keyframe Stitcher, as described herein.

FIG. 2 is a general system diagram depicting a general
computing device having simplified computing and I/O capa-
bilities for use with a digital camera or other image input
source for implementing a Keyframe Stitcher, as described
herein.

FIG. 3 is a general system diagram depicting a digital
camera having integrated computing and I/O capabilities and
an integral display screen for implementing a Keyframe
Stitcher, as described herein.

FIG. 4 illustrates an exemplary architectural system dia-
gram showing exemplary program modules for implement-
ing a Keyframe Stitcher, as described herein.

FIG. 5A provides a sequence of images, with lines showing
initial image matching sequence performed by the Keyframe
Stitcher, wherein image frames are matched to their sequen-
tial neighbors and to the immediately preceding keyframe
(with each keyframe being identified here as “KEY™).

FIG. 5B provides a sequence of images, with lines showing
forward matching to subsequent additional key frames from
each intermediate (non keyframe) frame (with each keyframe
being identified here as “KEY™) in addition to the matches
illustrated in FIG. 5A.

FIG. 5C provides the sequence of images of FIG. 5B, with
lines showing matches between keyframes (with each key-
frame being identified here as “KEY™) in addition to the
matches illustrated in FIG. 5B.

FIG. 6 illustrates an exemplary flow diagram which illus-
trates an exemplary operational flow of one embodiment of a
Keyframe Stitcher, as described herein.

FIG. 7 illustrates a static mosaic panorama generated using
the Keyframe Stitcher, with an overlay of dynamic video
frames warped and mapped to static mosaic panorama to
create a dynamic mosaic panorama.

FIG. 8 through FIG. 13 illustrate various examples of
mosaic panoramas generated by the Keyframe Stitcher from
unique video sequences.

FIG. 14A illustrates a pair of images having matching
feature points in a small angular window of each image.

FIG. 14B illustrates the pair of images of FIG. 14 A, show-
ing a compression of the matching feature points resulting
from replacing sets of matching feature point measurements
with corresponding representative measurements.

FIG. 15 provides a graph which illustrates that for a mosaic
in which there are only connections between a small subset of
all image pairs, the sparsity pattern of the Hessian, H, is
represented by a sparse matrix having a pattern similar to the
graph of FIG. 15.

FIG. 16 provides a graph which illustrates that the sparsity
of the Hessian for a particular video sequence, as illustrated
by FIG. 15, may be leveraged to reduce the computational
complexity of optimizing image orientations by permuting
the parameters of the keyframes to the end, thereby limiting
the number of non-zero entries, or fill-ins, when factoring the
Hessian during optimization operations.
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6
DETAILED DESCRIPTION

In the following description of the preferred embodiments
of the present invention, reference is made to the accompa-
nying drawings, which form a part hereof, and in which is
shown by way of illustration specific embodiments in which
the invention may be practiced. It is understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the present inven-
tion.

1.0 Exemplary Operating Environments:

FIG. 1, FIG. 2, and FIG. 3 illustrate various examples of
suitable computing environments on which various embodi-
ments and of a “Keyframe Stitcher,” as described herein, may
be implemented.

For example, FIG. 1 illustrates an example of a general
computing system environment 100. The computing system
environment 100 is only one example of a suitable computing
environment and is not intended to suggest any limitation as
to the scope of use or functionality of the invention. Neither
should the computing environment 100 be interpreted as hav-
ing any dependency or requirement relating to any one or
combination of components illustrated in the exemplary oper-
ating environment 100.

The invention is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to,
personal computers, server computers, hand-held, laptop or
mobile computer or communications devices such as cell
phones and PDA’s, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the
above systems or devices, and the like.

The invention may be described in the general context of
computer-executable instructions, such as program modules,
being executed by a computer in combination with hardware
modules, including components of a microphone array 198.
Generally, program modules include routines, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types. The
invention may also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program mod-
ules may be located in both local and remote computer
storage media including memory storage devices. With ref-
erence to FIG. 1, an exemplary system for implementing the
invention includes a general-purpose computing device in the
form of a computer 110.

Components of computer 110 may include, but are not
limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components
including the system memory to the processing unit 120. The
system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
By way of example, and not limitation, such architectures
include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus,
Video Electronics Standards Association (VESA) local bus,
and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus.
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Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
volatile and nonvolatile removable and non-removable media
implemented in any method or technology for storage of
information such as computer readable instructions, data
structures, program modules, or other data.

Computer storage media includes, but is not limited to,
RAM, ROM, PROM, EPROM, EEPROM, flash memory, or
other memory technology; CD-ROM, digital versatile disks
(DVD), or other optical disk storage; magnetic cassettes,
magnetic tape, magnetic disk storage, or other magnetic stor-
age devices; or any other medium which can be used to store
the desired information and which can be accessed by com-
puter 110. Communication media typically embodies com-
puter readable instructions, data structures, program modules
or other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of'its characteristics set or changed
in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared,
and other wireless media. Combinations of any of the above
should also be included within the scope of computer read-
able media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, is typically stored in ROM 131. RAM 132 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 illustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 is typically
connected to the system bus 121 through a non-removable
memory interface such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 is illustrated as storing operating
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system 144, application programs 145, other program mod-
ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter com-
mands and information into the computer 110 through input
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball, or touch pad.

Other input devices (not shown) may include a joystick,
game pad, satellite dish, scanner, radio receiver, and a televi-
sion or broadcast video receiver, or the like. These and other
input devices are often connected to the processing unit 120
through a wired or wireless user input interface 160 that is
coupled to the system bus 121, but may be connected by other
conventional interface and bus structures, such as, for
example, a parallel port, a game port, a universal serial bus
(USB), an IEEE 1394 interface, a Bluetooth™ wireless inter-
face, an IEEE 802.11 wireless interface, etc. Further, the
computer 110 may also include a speech or audio input
device, such as a microphone or a microphone array 198, as
well as a loudspeaker 197 or other sound output device con-
nected via an audio interface 199, again including conven-
tional wired or wireless interfaces, such as, for example,
parallel, serial, USB, IEEE 1394, Bluetooth™, etc.

A monitor 191 or other type of display device is also
connected to the system bus 121 via an interface, such as a
video interface 190. In addition to the monitor 191, computers
may also include other peripheral output devices such as a
printer 196, which may be connected through an output
peripheral interface 195.

Further, the computer 110 may also include, as an input
device, acamera 192 (such as a digital/electronic still or video
camera, or film/photographic scanner) capable of capturing a
sequence of images 193. Further, while just one camera 192 is
depicted, multiple cameras of various types may be included
as input devices to the computer 110. The use of multiple
cameras provides the capability to capture multiple views of
an image simultaneously or sequentially, to capture three-
dimensional or depth images, or to capture panoramic images
of'ascene. The images 193 from the one or more cameras 192
are input into the computer 110 via an appropriate camera
interface 194 using conventional wired or wireless interfaces,
including, for example, USB, IEEE 1394, Bluetooth™, IEEE
802.11, etc. This interface is connected to the system bus 121,
thereby allowing the images 193 to be routed to and stored in
the RAM 132, or any of the other aforementioned data storage
devices associated with the computer 110. However, it is
noted that previously stored image data can be input into the
computer 110 from any of the aforementioned computer-
readable media as well, without directly requiring the use of
a camera 192.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device, or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been illustrated in FIG. 1. The logical connec-
tions depicted in FIG. 1 include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.
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When used in a LAN networking environment, the com-
puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be internal or external, may be connected to the system bus
121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

With respect to FIG. 2, this figure shows a general system
diagram showing a simplified computing device coupled to a
digital still or video camera. Such computing devices can
typically be found in devices having at least some minimum
computational capability in combination with a communica-
tions interface. Examples of well known simplified comput-
ing systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not limited
to, hand-held, laptop or mobile computers, communications
devices such as cell phones and PDA’s, etc.

It should be noted that any boxes that are represented by
broken or dashed lines in FIG. 2 represent alternate embodi-
ments of the simplified computing device, as described
herein, and that any or all of these alternate embodiments, as
described below, may be used in combination with other
alternate embodiments that are described throughout this
document.

At a minimum, to enable a computing device to implement
the “Keyframe Stitcher” (as described in further detail
below), the computing device 200 must have some minimum
computational capability and a wired or wireless interface
240 for connecting a digital camera 290 or other image input
source.

In particular, as illustrated by FIG. 2, the computational
capability of the computing device 200 is generally illustrated
by processing unit(s) 210 (roughly analogous to processing
units 120 described above with respect to FIG. 1), and system
memory 220. Note that in contrast to the processing unit(s)
120 of the general computing device of FIG. 1, the processing
unit(s) 210 illustrated in FIG. 2 may be specialized (and
inexpensive) microprocessors, such as a DSP, a VLIW pro-
cessor, or other micro-controller rather than the general-pur-
pose processor unit of a PC-type computer or the like, as
described above.

In addition, the simplified computing device 200 of FIG. 2
may also include other components, such as, for example
connections for one or more input devices 240 (analogous to
the input devices described with respect to FIG. 1. The sim-
plified computing device of FIG. 2 may also include other
optional components, such as, for example one or more out-
put devices 250 (analogous to the output devices described
with respect to FIG. 1), such as an external display device
280. Finally, the simplified computing device of FIG. 2 may
also include removable and/or non-removable storage, 260
and 270, respectively (analogous to the storage devices
described with respect to FIG. 1).

Finally, with respect to FIG. 3, this figure is a general
system diagram depicting a digital camera 300 having inte-
grated computing 340 and 1/O capabilities 345, and a display
device 310, such as an LCD screen, for implementing a Key-
frame Stitcher, as described herein.
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In general, as is well known to those skilled in the art,
conventional digital cameras include components such as
those described above (e.g., I/O, computing, and display), in
addition to camera memory 320 that is either removable 325
or non-removable 330. Such cameras also include a lens 305
and a set of one or more controls 315. Further, as with the
simplified computing device described with respect to FIG. 2,
the computing capability 340 of the digital camera can be
implemented using low cost specialized processors, such as a
DSP, a VLIW processor, or other micro-controller rather than
the general-purpose processor unit of a PC-type computer or
the like, as described above with respect to FIG. 1. As
described in further detail below, these components are used
in combination to enable the real-time functionality of the
Keytrame Stitcher in a standalone digital camera.

The exemplary operating environments having now been
discussed, the remaining part of this description will be
devoted to a discussion of the program modules and processes
embodying the “Keyframe Stitcher.”

2.0 Introduction:

A “Keyframe Stitcher” provides an efficient technique for
building mosaic panoramic images by registering or aligning
sequences of image frames into an underlying panoramic
representation. The techniques provided by the Keyframe
Stitcher are scalable such that large panoramas may be easily
constructed by registering large numbers of sequential image
frames, such as image sequences captured by still or video
cameras, or other image sources. Further, in various embodi-
ments, the Keyframe Stitcher is sufficiently optimized to
allow for real-time, or near-real-time, stitching of images.
Consequently, users are able to “brush” a scene with a camera
to create mosaic images of the scene in real-time as the
images are being captured.

It should be noted that these real-time embodiments of the
Keyframe Stitcher may be implemented within a standalone
video camera or the like having integral displays for render-
ing the mosaic panoramic images as they are created. Simi-
larly, the Keyframe Stitcher may also be implemented on an
external display device, either coupled directly to the digital
camera, or coupled to the digital camera via a separate com-
puting device. However, in each of these cases, the Keyframe
Stitcher described herein operates in essentially the same
way.

Consequently, while the Keyframe Stitcher will be gener-
ally described herein as being implemented within a comput-
ing device, such as, for example, a PC-type computer per-
forming post-processing of image sequences after those
sequences have been captured, it should be understood the
detailed description of the Keyframe Stitcher provided herein
applies equally to the additional embodiments involving
external display devices and/or external computing devices,
or cameras within which the Keyframe Stitcher is imple-
mented directly, so as to provide for real-time generation of
mosaic panoramas.

2.1 System Overview:

As noted above, the Keyframe Stitcher described herein
provides an efficient image mosaicing technique which
allows for either real-time or offline stitching of a sequence of
images from a set of images of a scene to generate mosaic
panoramas, and for generation of animated mosaic panora-
mas.

In general, in one embodiment, the Keyframe Stitcher per-
forms the following steps for registering and aligning images
for generating mosaics:
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. First, the Keyframe Stitcher extracts “features” or “inter-
est points” from every new image frame, with a first
image frame and a last image frame being identified as a
“keyframes.”

2. Each subsequent frame is matched (via the features) to
the previous frame and to the immediately preceding
keyframe.

3. New keyframes are identified from the incoming image
frames whenever an estimated frame overlap drops
below a minimum overlap threshold.

a. Alternately, if a predetermined maximum number of
frames has been exceeded without identifying a new
keyframe as a function of image frame overlap, then
the current frame is identified as a new keyframe.

4. Each frame is also matched to the next or “forward”

keyframe.

—_

5. Every keyframe is then matched to all other keyframes to
construct a keyframe “mesh.”

6. All of the match measurements (i.e., the “match struc-
ture”) between images frames, image frames and key-
frames, and between keyframes are then used to estimate
optimal image orientations (including scalings, warp-
ings, rotations, etc) for the image frames, with the image
orientations then being used to construct the image
mosaic from the sequence of image frames.

Note that in constructing the image mosaics from the esti-
mated optimal orientations of the image frames, conventional
image stitching techniques are used to combine overlapping
image segments, including, for example, conventional blend-
ing, feathering, contrast and brightness adjustments,
de-ghosting operations, etc.

Asnoted above, in one embodiment, the Keyframe Stitcher
is used to generate “animated mosaics” wherein a static
mosaic background is generated, and action shots occurring
within sequences of additional frames corresponding to sub-
regions of the overall mosaic are warped and mapped to the
overall mosaic to generate an “animated panorama” having
both static and dynamic components blended into an overall
mosaic panorama.

In this embodiment, the camera is generally panned over
the scene to build a “background” mosaic followed by one or
more “action shots” from within subsections of the overall
mosaic. However, in this case, processing of the additional
frames for the action shots differs somewhat from the general
approach summarized above for construction of the static
mosaic panorama.

In particular, the static background of animated mosaic
panorama is constructed in exactly the same manner as
described above. However, the sequence of “live” frames
(i.e., “action shots™) are then added as a dynamic overlay to
the static mosaic to create an animated mosaic by registering
each action shot to only the “keyframe mesh” of the mosaic
panorama rather than to the entire “match structure.” One
reason that registration to the keyframe mesh is used rather
than registration to the entire match structure is that because
of the “action” occurring within the sequence of frames rep-
resenting the action shot it is likely that the frames of the
action shot will not match the intermediate frames between
keyframes very well.

Note that in “registering” the frames of the action shots,
those frames are warped, scaled rotated, etc., as necessary, to
fit into the overall mosaic. Further, as with the generation of
the static mosaic described above, after registering the frames
of the action shot to the overall mosaic, conventional image
stitching techniques are used to combine overlapping image
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segments, including, for example, conventional blending,
feathering, contrast and brightness adjustments, de-ghosting
operations, etc.

Finally, in yet another embodiment, as noted above, the
Keyframe Stitcher is used to provide for real-time or near-
real-time image stitching so as to generate mosaic panoramas
while a user moves a camera over a scene. In this case, rather
than processing the entire video stream, to generate the com-
plete match structure prior to constructing the mosaic pan-
orama, optimal image orientations are estimated for “blocks”
of images corresponding to neighboring keyframe pairs to
provide for near-real-time incremental construction of
mosaic images.

One advantage of this embodiment is that it allows for a
near-real-time display of the mosaic panorama to be dis-
played to the user as the images are being captured. For
example, as the user pans a video or still camera over a scene,
and captures images of that scene, the corresponding mosaic
panorama can be displayed in real-time on the LCD-type
display screen or viewfinder window of that digital still or
video camera. Clearly, this real-time embodiment may also
be implemented on an external display device coupled to the
camera, either directly, or via an external computing device to
which the camera is itself coupled.

However, each of these embodiments of the Keyframe
Stitcher operate in an identical manner, with respect to gen-
eration of mosaic panoramas, and differ only in the hardware
and hardware connections used for that purpose. Conse-
quently, for purposes explanation, the following discussion of
the Keyframe Stitcher will assume that the Keyframe Stitcher
is implemented in a PC-type computer having a video stream
input source from either a live or recorded camera input.
However, it should be understood that the Keyframe Stitcher
described herein is intended to encompass each of the afore-
mentioned embodiments and implementations.

2.2 System Architectural Overview:

The processes summarized above are illustrated by the
general system diagram of FIG. 4. In particular, the system
diagram of FIG. 4 illustrates the interrelationships between
program modules for implementing the Keyframe Stitcher, as
described herein.

It should be noted that any boxes and interconnections
between boxes that are represented by broken or dashed lines
in FIG. 4 represent alternate embodiments of the Keyframe
Stitcher described herein, and that any or all of these alternate
embodiments, as described below, may be used in combina-
tion with other alternate embodiments that are described
throughout this document. Further, it should also be noted
that for purposes of clarity of explanation, the Keyframe
Stitcher illustrated in FIG. 5 shows a camera or image source
400 as being external to the overall system of the Keyframe
Stitcher. However, as noted above, in various embodiments,
some or all of the components and program modules illus-
trated in FIG. 4 may be integral to the camera 400.

In general, as illustrated by FIG. 4, the Keyframe Stitcher
generally begins operation by providing images either
directly from a still or video camera 400 or other image input
source to an image frame input module 405 which saves the
image files 410 for use by the Keyframe Stitcher. Alternately,
the Keyframe Stitcher can operate on a set of prerecorded
images files 410, such as a video recording or other image
sequence.

Once the image files 410 are available to the Keyframe
Stitcher, a feature point extraction module 415 analyses each
image frame and extracts a set of image features from each
image frame. These extracted features are then provided to a
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match structure construction module 420 which acts to iden-
tify keyframes in the images 410 and build a “match struc-
ture” 425 which generally represents: 1) correspondences
between keyframes (i.e., a “keyframe mesh”™), 2) correspon-
dences between intermediate frames between the neighbor-
ing keyframes, and 3) correspondences between the interme-
diate frames and their neighboring keyframes on either side of
those intermediate frames.

In general, the aforementioned feature point extraction
module 415 will typically extract several hundred features
from each image, resulting in hundreds of matches between
matched image pairs with large overlaps (and therefore a
substantially larger “match structure”). If the matched fea-
tures are well distributed across the image, this strongly con-
strains the relative orientations of the images. However, the
large number of measurements is a computational bottleneck
for many image sequences. Consequently, in one embodi-
ment, as described in further detail in Section 3.5, the match
structure construction module acts to replace the measure-
ments between pairs of images with a much smaller number
of “representative measurements” so as to reduce the compu-
tational overhead required for generation of image mosaics.

In either case, once the match structure 425 has been com-
pleted, it is provided to an orientation optimization module
430 which analyzes the match structure to determine optimal
“orientations” 433 for each image. In general, these optimal
orientations 433 represent estimates of “camera orienta-
tions,” such as, for example, focal lengths, camera rotations,
etc.

These orientations 433 are then translated back to the
images for use by a mosaic construction module 435 which
uses the orientations 433 for “registration” of the images 410
by rotating, scaling, and warping the images, as necessary to
fit the mosaic. Specifically, given the optimized image orien-
tations 433, the mosaic construction module 435 operates to
build a mosaic panorama 440 from the image frames 410 as a
function of the optimized image orientations. Note that in one
embodiment, construction of the mosaic 440 by the mosaic
construction module further includes the use of conventional
image blending techniques, including, for example, feather-
ing, contrast and brightness adjustments, de-ghosting opera-
tions, etc.

Once the mosaic construction module 435 has completed
the mosaic 440, in various embodiments, the mosaic 440 is
simply stored for later use, displayed on a conventional dis-
play device 445, or provided back to the display of the digital
still or video camera 400 used to capture the images for use in
real-time previews of the mosaic.

As noted above, in a related embodiment, the Keyframe
Stitcher acts to provide for mosaic panorama generation in
real-time so that users can see on the display device coupled
to, or integrated with, their camera exactly what the com-
pleted panorama will look like. In this embodiment, construc-
tion of the mosaic proceeds as described above. However,
rather than process the entire set of image frames 410 at once,
the image frames are processed as they are received (such as
from the real-time camera 400 input) by processing “blocks”
of intermediate image frames bounded by two immediately
neighboring keyframes. Consequently, the maximum delay
for generation of the real-time mosaic images is on the order
of about the time period from one keyframe to the next.

In another embodiment, also as noted above, the Keyframe
Stitcher acts to build animated panoramas having both static
and dynamic components. In general, once the underlying
mosaic has been constructed by the mosaic construction mod-
ule 435, additional sequential image frames representing an
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“action shot” are registered with the keyframe mesh portion
of'the match structure 425 by a frame warping/mapping mod-
ule 450.

Specifically, as with the generation of the underlying
mosaic, optimal orientations 433 of the image frames 410
representing the action shot are computed by the orientation
optimization module 430. However, these action shot orien-
tations 433 are computed only with respect to the keyframe
mesh portion of the match structure 425, rather than the entire
match structure. These action shot orientations 433 are then
used by the frame warping/mapping module 450 to register
the images 410 representing the action shot by rotating, scal-
ing, and warping the images, as necessary to fit onto the
mosaic.

Finally, an animated mosaic generation module 455 then
uses conventional image stitching techniques to overly the
registered image frames of the action shot onto underlying
mosaic by applying conventional blending, feathering, con-
trast and brightness adjustments, de-ghosting operations, etc.
on a frame by frame basis. The resulting animated mosaic is
then stored 440 for later use as desired, or provided for play-
back via the display device 445.

Further, it should be noted that unlike the underlying
mosaic which represents a single composite of all of the
frames used to construct the mosaic 440, the animated mosaic
generated by the animated mosaic module 455 will generate
an animation that shows each frame of the action shot in order,
as a sequential mapping of frames. In other words, the ani-
mated mosaic sequentially shows each frame of the action
shot on the underlying mosaic, while removing each frame of
the action shot from the underlying mosaic prior to showing
the next sequential frame of the action shot on the underlying
mosaic.

Note that this same technique for generating animated
mosaics can be used to provide compression of video
sequences by constructing a single static mosaic of unmoving
or static portions of the video sequence, and then extracting
and mapping the moving or dynamic portions of the video
sequence to the underlying static mosaic in the same manner
as described above. In this case, redundant information in the
frames used to construct the underlying mosaic is simply
discarded, and only the dynamic elements representing the
extracted action shots are kept along with the underlying
mosaic. As a result, the resulting animated mosaic can pro-
vide significant compression ratios relative to the original
video sequence, depending upon the content of the original
video sequence. Note that identification and extraction of
dynamic regions of a video sequence is a concept that is well
known to those skilled in the art, and will not be described in
detail herein.

3.0 Operation Overview:

The above-described program modules are employed for
implementing the Keyframe Stitcher described herein. As
summarized above, this Keyframe Stitcher provides an effi-
cient image mosaicing technique which allows for real-time
stitching of a sequence of images from a set of images of a
scene to generate mosaic panoramas, and for generation of
animated mosaic panoramas. The following sections provide
a detailed discussion of the operation of the Keyframe
Stitcher, and of exemplary methods for implementing the
program modules described in Section 2.

In particular, the following sections present an automatic
and efficient method to register and stitch potentially many
thousands of video frames into a large panoramic mosaic. The
techniques provided by the Keyframe Stitcher preserves the
robustness and accuracy of image stitchers that match all
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pairs of images while utilizing the ordering information
inherent in video recordings. In one embodiment, the com-
putational cost of searching for matches between video
frames is reduced by adaptively identifying key frames based
on the amount of image-to-image overlap. Keyframes are
matched to all other key frames, but intermediate video
frames between keyframes are only matched to temporally
neighboring key frames and other neighboring intermediate
frames. Image orientations are then estimated from this
sparse set of matches. Additionally, in another embodiment,
the matches between pairs of images are compressed by
replacing measurements within small windows in the image
with a single representative measurement thereby substan-
tially reducing the time required to estimate the image orien-
tations with minimal loss of accuracy.

3.1 Operational Details of the Panoramic Viewfinder:

The following paragraphs detail specific operational
embodiments of the Keyframe Stitcher described herein. In
particular, the following paragraphs describe cameras and
input images for use with the Keyframe Stitcher; operational
considerations; feature extraction and image matching; effi-
cient match structures; match structure compression; and
computational overhead.

3.2 Cameras and Image or Video Streams:

Asnoted above, in one embodiment, the Keyframe Stitcher
is embodied within a digital still or video camera which has
sufficient integrated computing power to generate real-time
mosaic previews. However, in addition to implementing the
Panoramic Viewfinder within a digital still or video camera,
any of a number of conventional camera types or video feeds
may be used in combination with the Panoramic Viewfinder.

In fact, virtually any digital camera or video stream feed
which is capable of being interfaced with an external com-
puting device, and by extension to the Keyframe Stitcher, may
be used. Further, many newer still or video cameras can be
connected directly to a computer’s existing ports (USB inter-
faces, IEEE 1394 interfaces, Bluetooth™ wireless interfaces,
IEEE 802.11 wireless interfaces, etc). Any such camera can
be used by the Keyframe Stitcher.

Further, if the functionality of the Keyframe Stitcher is not
integral to the camera, the Keyframe Stitcher can be instan-
tiated on any computing device having sufficient computing
power in the same manner as if the Keyframe Stitcher were
implemented within a digital camera for real-time generation
of mosaic panoramas. For example, a user can use a conven-
tional “web cam” or the like (having no integral computa-
tional capabilities), connected to a desktop, notebook, or
handheld computing device, to generate mosaic panoramic
images in basically the same manner as if captured by a
dedicated digital camera having integrated Keyframe Stitcher
capabilities.

However, as noted above, rather than describe every pos-
sible combination of an external camera or image source
connected to a separate computing device for enabling the
Keyframe Stitcher, the Keyframe Stitcher will be generally
described herein as being implemented within a conventional
computing device for processing image sequences for gen-
eration of mosaic images. However, it should be understood
the detailed description of the Keyframe Stitcher provided
herein applies equally to the additional embodiments involv-
ing integration into digital cameras, and external computing
devices coupled to cameras which may or may not include
integral display devices or computing capabilities.
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3.3 Operational Considerations:

In contrast to many conventional mosaicing techniques, the
Keyframe Stitcher does not eliminate frames from computa-
tional consideration. Rather, the Keyframe Stitcher matches
intermediate frames to adaptively selected key frames. Fur-
ther, in contrast conventional video mosaicing techniques that
require limited or constrained camera motions, the Keyframe
Stitcher provides an efficient mosaicing method which is
generally applicable to a large number of camera motion
models, such as, for example, 2D similarities, 3D rotations,
affine warps and full homographies, to name only a few such
motion models. Consequently, the mosaicing approach pro-
vided by the Keyframe Stitcher can be used to obtain a robust,
globally consistent alignment of many thousands of frames
from a video sequence.

Further, to allow real-time or near-real-time performance
of the Keyframe Stitcher, it must be assumed that there is a
finite bound on the total number of keyframes. One reason-
able way is to assume that the entire mosaic will fit in local
memory (i.e. the Keyframe Stitcher is not mosaicing an infi-
nite plane, but rather, it is mosaicing a rotational panorama or
a limited extent plane). This means that the entire panorama
can be covered by a finite number of keyframes.

In one embodiment, as noted above, new keyframes are
only created when a current frame doesn’t overlap the imme-
diately previous keyframe by some minimum threshold
amount. However, to guarantee that there always will be a
finite number of keyframes for a rotational panorama or a
limited extent plane, in a closely related embodiment, new
keytframes are created only when the current frame doesn’t
overlap any prior keyframe by some threshold (instead of just
the preceding keyframe).

For example, if a user pans the camera back and forth over
the same portion of a scene several times, there can be several
keytrames that overlap the same portion of the resulting
mosaic. For an unlimited number of image frames, this means
the number of keyframes may be unbounded. However, to
handle an unlimited number of image frames, the number of
keyframes needs to be bounded by a constant (since the
computational cost is cubic in the number of keyframes, as
described in further detail in Section 3.7).

As noted above, for rotational panoramas or for panoramas
constructed from a limited extent plane, a finite number of
keytframes can cover the entire compositing surface for any
chosen overlap threshold. Therefore, the number of key-
frames can be bounded by only creating new keyframes when
they don’t overlap any other keyframe by some threshold
(instead of just the immediately preceding keyframe). One
simple way to make this determination is to simply check the
number of feature point matches between the current frame
and all keyframes.

Furthermore, in additional embodiments, the Keyframe
Stitcher can be made more robust by determining whether
matches between feature points are geometrically plausible.
This can be done by re-estimating the keyframe orientations
each time a new keyframe is added. This also enables the
production of a real-time panoramic preview. For instance,
the keyframes could be warped to the compositing surface,
blended and displayed.

3.4 Feature Extraction and Image Matching:

In a tested embodiment of the Keyframe Stitcher, conven-
tional Multiscale Oriented Patches (MOPS) were extracted
from each frame to provide the features for the subsequent
image matching. As is known to those skilled in the art,
MOPS provide a type of invariant feature located at Harris
corners in discrete scale-space and oriented using a blurred
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local gradient. MOPS are extracted from images by defining
a rotationally invariant frame in which a feature descriptor
consisting of an 8x8 patch of bias/gain normalized intensity
values is sampled. The density of features in the image is
controlled using an adaptive non-maximal suppression algo-
rithni. In a tested embodiment, MOPS-based matching of
images matching is achieved using a fast nearest neighbor
algorithm that indexes features based on their low frequency
Haar wavelet coefficients. In one embodiment, an outlier
rejection procedure is used to verity pairwise feature matches
based on a background distribution of incorrect feature
matches. Feature matches are then refined using RANSAC.

However, it should be noted that there are a large number of
conventional feature extraction techniques for use in image
matching. The Keyframe Stitcher described herein is adapt-
able for use with most such conventional feature extraction
techniques, and is not intended to be limited to the use of the
MOPS technique described above. However, for purposes of
explanation, the following discussion will generally refer to
the use of the aforementioned MOPS technique in extracting
features from images.

3.5 Efficient Match Structures:

As noted above, the number of frames in a video sequence
can rapidly increase to thousands of image frames in a very
short period of time. Therefore, in order to avoid matching all
pairs of frames, some assumption about the correlation
between temporal and spatial adjacency must be made. How-
ever, any such correlations assumptions should be limited so
as to avoid overly constraining the users’ capture of image
sequences. Further, one advantage ofthe Keyframe Stitcher is
that the mosaicing framework described herein defers align-
ing the images until after the matching is done, thereby allow-
ing the Keyframe Stitcher to align images with more matches
before images with fewer matches, thereby improving the
overall quality of the resulting mosaic.

In order to maintain a robust mosaicing technique, the
basic assumption made by the Keyframe Stitcher is that most
temporally adjacent frames are also spatially adjacent. The
Keytrame Stitcher therefore first looks for matches between
all pairs of temporally adjacent images. Local matches
between such pairs are then used to select keyframes based on
the amount of overlap (or in one embodiment whenever a total
number of frames exceeds a predetermined threshold without
identifying a new keyframe). To do this, the Keyframe
Stitcher starts by defining the first and last frame to be key-
frames. The Keyframe Stitcher then steps though the video
(or other image sequence) labeling frames as key frames if
they do not overlap the most recently labeled key frame by
some threshold (on the order of about 50% in a tested embodi-
ment). Intermediate frames not labeled as key frames are
matched to their temporally neighboring key frames and
intermediate frames. A “keyframe mesh” is then created by
matching all pairs of key frames.

The assumption underlying this approach is that neighbor-
ing key frames almost completely overlap the panorama. In
general, though, there will be portions of the panorama that
are not covered by any keyframes and that will therefore be
left out of the matching. However, as the overlap threshold is
set tighter, these potentially unmatched areas become smaller.
On the other hand, if the camera path travels over the pan-
orama many times, several keyframes can be associated with
the same portion of the panorama. This will cause more
matches to be tried when generating the keyframe mesh than
if the camera had panned over the panorama once. Therefore
the user pays a computational cost penalty for covering the
panorama more than once. While it is possible to prune key-
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frames that overlap other keyframes as aresult of passing over
the same portions of a scene more than once, the Keyframe
Stitcher instead processes all frames to increase accuracy of
the overall mosaicing process.

As noted above, matching of images is used to construct a
“match structure” which includes a “keyframe mesh.” In gen-
eral, the first step in constructing this mesh is to identify the
keytframes in a sequence of image frames. In identifying these
keytrames, the first and last frames of the sequence are set as
keytrames. The entire image sequence is then evaluated to
identify the remaining keyframes (either as a function of
frame overlap or number of intervening frames) between the
first and last frame. Once the keyframes have been identified,
the entire image sequence is evaluated, as described in further
detail below, to construct the match structure relative to the
identified keyframes.

For example, as illustrated by the sequence of image
frames provided in FIG. 5A, the first and last frames of the
sequence are identified as keyframes, and any intervening
frames qualifying as keyframes are also identified as key-
frames (indicated as “KEY” in FIG. 5A). As shown by the
curved connecting lines on the upper portion of FIG. 5A, each
image frame (including keyframes) is then matched to the
immediately preceding keyframe. Further, as illustrated by
the curved connecting lines on the lower portion of FIG. 5A
each image frame is also matched to its immediately neigh-
boring image frames. As noted above, matching is performed
as a function of the “interest points” or “features” extracted
from every image frame.

Next, the Keyframe Stitcher continues the matching pro-
cess by performing “forward matching” of the image frames.
In particular, as illustrated by the curved connecting lines on
the lower portion of FIG. 5B, during the forward matching,
each image frame (including keyframes) is matched to the
immediately preceding keyframe (indicated as “KEY” in
FIG. 5B).

Finally, in the last step in constructing the match structure,
the Keyframe Stitcher generates a ‘“keyframe mesh” by
matching all of the keyframes to every other keyframe. For
example, as illustrated by the curved connecting lines on the
lower portion of FIG. 5C, during the construction of the
keytrame mesh, each keyframe (indicated as “KEY” in FIG.
5C) is matched to every other keyframe in the image
sequence. Note that some keyframe-to-keyframe matching is
already performed as a function of the first two matching
steps described above with respect to FIG. 5A and FIG. 5B. It
is not necessary to repeat matches that have already been
computed. However, any keyframe matches that were com-
puted prior to the explicit keyframe-to-keyframe matching
step are still included in the separate keyframe mesh which is
used for several purposes, including mapping of action shots
for animated panoramas.

The match structure construction process described above
can be summarized in the following steps:

1. Mark first and last image frames as keyframes

2. For each image frame:

a. Extract interest points

b. Match to previous frame

c¢. Match to previous keyframe

d. Estimate overlap with previous keyframe
i. Mark as a keyframe if overlap is too low

e. Optionally mark as a keyframe if too many image
frames without a new keyframe based on overlap.

3. For each frame:

a. Match to the next or “forward” key frame

4. For each key frame:

a. Match to all other key frames
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5. Optionally compress match measurements comprising

the match structure (as described in further detail below)

6. Estimate image orientations from match structure (or

compressed match measurements)

This process is generally illustrated by FIG. 6, which pro-
vides an exemplary operational flow of one embodiment of a
Keytrame Stitcher, as described herein. It should be noted that
any boxes that are represented by broken or dashed lines in
FIG. 6 represent alternate embodiments of the Keyframe
Stitcher, and that any or all of these alternate embodiments, as
described below, may be used in combination with other
alternate embodiments that are described throughout this
document.

In general, as illustrated by FIG. 6, the Keyframe Stitcher
described herein begins operation by retrieving a set of
images frames 605 that are either pre-recorded, or provided as
live input from a video camera 600 or other image input
source. In particular, the Keyframe Stitcher begins be getting
a next image frame 610 from the camera 600 or prerecorded
image frames 605.

If the current image frame of the image sequence 605 is a
first image frame 615, it is identified 620 as a keyframe 625.
If the current frame is not a keyframe 625, then it is matched
630 to the prior image frame 605 (which may or may not also
be akeyframe). This match information is then stored as a part
of the overall match structure 635. Next, the current image
frame is matched 640 to the immediately prior keyframe 625.
Again, this match information is then stored as a part of the
overall match structure 635.

A determination is then made as to whether a computed
overlap between the current frame and the preceding key-
frame is below a predetermined threshold 645. If the overlap
is below that threshold 645, then the current frame is identi-
fied 650 as a keyframe 625. Alternately, if too many frames
have been processed without a new frame being identified as
a keyframe based on overlap, then, in one embodiment, the
current frame is identified 650 as a keyframe 625.

In general, this matching process (630 and 640) and key-
frame identification process (645, 650, and 655) then contin-
ues until the entire image sequence has been processed, and
there are no more image frames 660 (with the last frame also
being identified as a keyframe 650). However, in the case of
real-time processing, whenever the current frame is identified
650 as a keyframe, then that frame is provisionally treated as
a “last frame” 660, and processing of the image sequence
continues for completing the overall match structure 635.

In particular, whether the entire image sequence 605 has
been processed (up to box 660), or whether real-time process-
ing of blocks of image frames bounded by keyframe pairs is
being used, construction of the match structure continues by
matching 665 each frame 605 to the next or “forward” key-
frame 625. This match information 665 is then stored as a part
of the overall match structure 635. Note that connection to
match structure 635 from box 665 is illustrated by the symbol
(A) so as to provide a more legible figure. Similarly, connec-
tions to the images frames 605 and keyframes 625 are illus-
trated by the symbols (B) and (C), respectively so as to pro-
vide a more legible figure.

Next, all of'the keyframes 625 are matched 670. In the case
of real-time processing, this match consists of matching the
current keyframe pair to each other, and to prior keyframes or
keytrame pairs, if any. This match information 670 is then
stored as a part of the overall match structure 635. However,
it should be noted that this particular match information 670
also represents the aforementioned “keyframe mesh” which
is used in generating animated mosaics, as described in fur-
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ther detail below. Note that connection to match structure 635
from box 670 is also illustrated by the symbol (A) so as to
provide a more legible figure.

Next, in one embodiment, the overall match structure 635
is compressed 675 (as described in further detail in Section
3.6) to provide for a reduction in computational overhead
when estimating 680 optimal image orientations from the
match structure 635.

Finally, given the estimated 680 optimal image orienta-
tions, image 605 registration and alignment is performed (via
scalings, warpings, rotations, etc.), along with optional con-
ventional blending, feathering, contrast and brightness
adjustments, de-ghosting operations, etc., for constructing
685 the mosaic 690 which is then stored for later use. Further,
in the case of real-time mosaic generation, the mosaic 690 is
provided back to the camera 600 display in near-real-time for
viewing by the user while the user is capturing images.

Examples of various animated and static panoramas are
provided in FIG. 7 through FIG. 13, as described below:

In particular, FIG. 7 illustrates a static mosaic panorama
700 generated using the Keyframe Stitcher, with an overlay of
dynamic video frames 710 warped and mapped to static
mosaic panorama to create a dynamic mosaic panorama. Note
that in FIG. 7, the overlay of dynamic video frames 710 has
been enlarged and offset with a large white arrow pointing to
the location where it is to be mapped into the overall static
mosaic. In operation, this enlargement and offsetting is not
how the animated mosaic is constructed. Specifically, this
enlargement and offsetting is provided as an example of
where action shots are mapped since otherwise it would not
be possible to clearly differentiate frames which are warped
and mapped as an overlay to the overall static mosaic in a
single image such as FIG. 7.

FIG. 8 and FIG. 9 illustrate examples of un-cropped mosaic
panoramas that were generated from continuous video
sequences having on the order of about 1000 frames or so at
a resolution of about 720x1280 pixel resolution. Similarly,
FIG. 10 (568 mosaiced frames) and FIG. 11 (568 mosaiced
frames), also provide examples of mosaic that were created
from continuous video sequences captured in a single swath
(continuous sweep of the camera).

Finally, FIGS. 12 and 13 illustrates examples of panoramas
that were generated from video sequences captured in a mul-
tiple separate swaths (three in each case). In each case, more
than a 1000 images were combined to generate each of the
mosaics. It should be noted that in the case of multiple swaths,
better results were observed by setting the overlap threshold
for keyframe detection to a lower level than in the case of
continuous swaths where temporal and spatial overlap is
naturally more consistent.

3.6 Match Structure Compression:

Once feature matches have been established between pairs
of images, they can be used to estimate the camera orienta-
tions. Each feature match defines a measurement error that
depends on the relative orientations of the pair of images. The
relative camera orientations are estimated by minimizing the
measurement error in a (robustified) least-squares frame-
work. Conventional interest point detectors will typically
extract several hundred features from each image, resulting in
hundreds of matches between matched image pairs with large
overlaps. If the matched features are well distributed across
the image, this strongly constrains the relative orientations of
the images. However, the large number of measurements is a
computational bottleneck for many image sequences.

Consequently, in one embodiment, the Keyframe Stitcher
addresses this computational bottleneck by automatically
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replacing the measurements between a pair of images with a
much smaller number of “representative measurements.”

For example, as illustrated by FIG. 14A, a pair of images
1400 and 1410 may have a set of matching feature points 1420
and 1430, respectively across small windows in each image.
Note that the correspondence between particular feature
points in image 1400 and image 1410 is illustrated via the use
of'solid connecting lines 1440 from the feature points 1420 in
the first image to the matching feature points 1430 in the
second image. Next, as illustrated by FIG. 14B, in accordance
with the preceding discussion, the group of feature points
1420 in image 1400 are analyzed to create a single represen-
tative measurement 1450. Similarly, also as illustrated by
FIG. 14B, the group of feature points 143 in image 1410 are
analyzed to create a single representative measurement 1460.
This pair of representative measurements, 1450 and 1460, is
then used to replace the corresponding sets of feature points,
1420 and 1430, respectively, thereby compressing the total
number of feature points. Note that the dashed line 1470
illustrates the correspondence between the representative fea-
ture points, 1450 and 1460, in images 1400 and 1410.

In particular, in one embodiment, both the original and new
measurements are represented by pairs of image points and
2x2 covariance matrices. The new measurement is set to the
centroid of the original points and the covariance is adjusted
by summing the inverse covariance matrices.

By replacing the original measurements with a smaller
number of representative measurements, the Keyframe
Stitcher changes the shape of the error surface while signifi-
cantly reducing computational overhead. However, an accu-
racy penalty exists for the reduced computational cost. To
minimize the accuracy loss, measurements which span only
small portions of the image are merged. Measurements that
span a small angular window poorly constrain the parameters
of a homography other than the translational component.
Representing a group of points by their centroid discards the
constraints they provide on the non-translational components
of the warp required to align images. Therefore, only allow-
ing points to merge if they have a small extent (i.e., by using
the small angular window) reduces the amount of information
that is being discarded, and therefore minimizes the error
resulting from discarding that data.

In general, measurements to be merged are selected by
placing a predetermined bound on the window size they span
in either image. Starting with all the measurements in one
group, the Keyframe Stitcher recursively splits along the larg-
est axis-aligned dimension (in either image) until the bound is
met in both images for all groups. For each group, a single
measurement is then created in each image positioned at the
centroid of the group. More sophisticated techniques (e.g.,
k-means clustering) may also be used in alternate embodi-
ments, as such techniques may potentially satisty the bound
constraint with fewer clusters. However, the procedure
described above performs well and generally requires a rela-
tively insignificant amount of computational overhead to
compute.

In a tested embodiment, an evaluation was made of the
accuracy of merging measurements and approximating them
with a single point by compressing measurements with a
range of bounding box sizes. In particular, the results of
sweeping the maximum bounding box size from 0% (no
compression) to 50% (up to one point in each quadrant of the
image) were observed. This sweep was run on three unique
image sequences. The results of this analysis showed that a
window size on the order of about 20% seems to provide good
performance results relative to both computational overhead
and accuracy. Note that with the tested image sequences, a
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window size on the order of about 20% corresponded to about
25 matches between fully overlapping images and about 12
matches between images that overlap by 50%. Since only 2
measurements are needed to estimate a rotation and zoom
between two images, a window size on the order of about 20%
seems to be a good number to start with. However, the win-
dow size may need to be smaller for warps such as homogra-
phies where the minimum number of required matches is
larger.

Clearly, there are other ways to reduce the number of
measurements considered in each image matching iteration.
For example, in one embodiment, each matched pair of
images can be aligned and a linear approximation to the error
can then be used to create a single, linear measurement con-
necting the two images. However, there are benefits to using
several representative 2D points (i.e., the representative mea-
surements” described above). First, it is possible to preserve
some of the non-linearity of the error surface without needing
to have the images aligned before simplitying the represen-
tation (using the compression technique described above).
Second, there are a number of conventional techniques that
have been designed to speed up sparse non-linear minimiza-
tion code to estimate optimal camera orientations. These
techniques for speeding up optimal camera orientation esti-
mates are easily adapted for use with the compression tech-
niques described above. In particular, it is simply a matter of
compressing the measurements between the matching and
alignment steps.

3.7 Computational Overhead

Using the aforementioned matching structure and com-
pressed measurements, camera orientations that minimize the
measurement error or objective function are estimated using
a second order, non-linear technique such as the conventional
Newton-Raphson technique. For P image pairs with M, mea-
surements between pair i, the objective function being mini-
mized is:

-1 Equation 1
X' = E E N

icP jeM; ¥

Here, e, is the 2D measurement error due to match j in pair i
and 2,;° is a 2x2 measurement covariance. e, depends on
measurement ij and the relative orientations of the images in
pair i. In one embodiment, the Keyframe Stitcher uses the
following symmetric warping function:

el-j:W(xij,pi)—W’1 (xl-jl,pl-) Equation 2
where, w() is the warping function, x,; and xij1 are the points
in each image being warped and p, represents a vector of warp
parameters. Note that p, represents a “halfway” warp between
the images in pair i. Further, in the case of a rotational pan-
orama with a single unknown focal length, this means that the
error is calculated on an image plane rotated halfway between
the two images, with the warp function given by Equation 3,
where:

Equation 3

T T 1 Xij
w[x;j, [o", 1] =7r[K(f)R(w)K (f)[1 D

where ni([X, v, z])’=[x/z, y/z]", R(®) is the halfway rotation
matrix, and K() is the calibration matrix:
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f 0 px
KH)=(0 f py
D0 1

Equation 4

Note that homographies, 2D similarities, and rotation only
motion models result in different forms of w( ).

At each iteration of the minimization of the objective func-
tion (i.e., optimization of orientations), the gradient and Hes-
sian of the objective function, g and H respectively, are cal-
culated and used to solve for an update step. Using a linear

approximation for e, the g and H are given by

ax? Equation 5
&= %0
P2
"= 5ea0r
and the update step, 9, is obtained by solving:
Hd=-g Equation 6

The Hessian H is a sparse NdxNd matrix, where N is the
number of cameras and d is the number of parameters used to
represent each camera (e.g., d=3 for a rotating camera). The
computational cost of calculating g and H is linear in the
number of measurements since each measurement term in
Equation 1 only depends on single pair of images.

For panoramas in which there are measurements between
all pairs of images, solving Equation 6 is cubic in N. However,
when there are only connections between a small subset of all
image pairs, the sparsity pattern of H is represented by a
sparse matrix having a pattern similar to the graph illustrated
in FIG. 15. As is well known to those skilled in the art,
conventional “bundle adjustment” techniques can be used to
take advantage of the sparsity of H to reduce the computa-
tional complexity of solving Equation 6, by using an LU
decomposition, to only cubic or less in the number of key-
frames and linear in the number of intermediate frames. By
permuting the parameters of the keyframes to the end, the
number of non-zero entries, or fill-ins, can be limited when
factoring H. An example of the sparsity pattern of the factored
Hessian from the image sequence used to construct the
mosaic of FIG. 8 is shown in FIG. 16.

In other words, FIG. 15 shows matched frames from the
image sequence used to generate the mosaic of FIG. 8, and,
equivalently, the sparsity pattern of the Hessian. Point (i, j) is
filled in if matches were found between image i and j. Tem-
poral neighbor matches show up as a line down the diagonal.
The forward and backward matching to keyframes show up as
boxes on the diagonal, with longer camera pauses generating
larger boxes (i.e., more feature point matches, assuming that
the camera is recording image frames at a constant rate). The
key frame to key frame matches show up as sparse off-diago-
nal points. Since the camera was panning slowly in one direc-
tion in the subject image sequence, the keyframe to keyframe
matches between temporally distant frames are outliers
which were rejected during the robust optimization. The
graph illustrated in FIG. 16 shows the sparsity pattern of the
factored Hessian after permuting the keyframes to the end.
Thekey frames cause fill-ins in the bottom right corner and up
the right side.
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The number of matching image pairs is at most quadratic in
the number of key frames (if they all overlap each other), but
more typically linear; it is also linear in the number of inter-
mediate frames. The number of feature matches per image
pair is a scalar multiplier on this portion of the computational
cost. In many cases, the cost of summing the contributions of
the measurements dominates the computational cost of solv-
ing the sparse linear system in the motion parameters. Reduc-
ing the number of per-image measurements in such cases
using feature match compression has been observed to pro-
vide substantial computational savings at little cost in accu-
racy.

The foregoing description of the Keyframe Stitcher has
been presented for the purposes of illustration and descrip-
tion. Itis not intended to be exhaustive or to limit the invention
to the precise form disclosed. Many modifications and varia-
tions are possible in light of the above teaching. Further, it
should be noted that any or all of the aforementioned alternate
embodiments may be used in any combination desired to
form additional hybrid embodiments of the Keyframe
Stitcher. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

What is claimed is:

1. A computer readable medium having computer execut-
able instructions for automatically generating mosaic images,
said computer executable instructions comprising:

identifying a set of feature points for each image of a set of

sequential images of a scene;
constructing a match structure of image correspondences
from the set of feature points identified for each image;

compressing the match structure by automatically replac-
ing one or more subsets of the sets of feature points with
a representative measurement;

estimating optimal image registrations from the com-

pressed match structure; and

constructing a static mosaic image from the set of images

as a function of the estimated optimal image registra-
tions.

2. The computer readable medium of claim 1 wherein
constructing the match structure of image correspondences
further comprises:

identifying the first and last image frames of the set of

sequential image frames as a keyframe;

for each image frame, identifying feature point matches to

an immediately preceding image;

for each image frame, identifying feature point matches to

an immediately preceding keyframe;
for each image frame, estimating an amount of overlap
with the immediately preceding keyframe and setting
that image frame as a new keyframe if the estimated
amount of overlap is below a predetermined threshold;

for each frame, identifying feature point matches to an
immediately succeeding keyframe and

for each keyframe, identifying feature point matches to

every other keyframe.

3. The computer readable medium of claim 2 wherein
constructing the match structure of image correspondences
further comprises for each image frame, estimating an
amount of overlap with all preceding keyframes and setting
that image frame as a new keyframe if the estimated amount
of overlap with all keyframes is below a predetermined
threshold.

4. The computer readable medium of claim 2 wherein
constructing the match structure of image correspondences
further comprises setting an image frame as a new keyframe
if a predetermined maximum number of image frames has
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been exceeded without identifying a new keyframe as a func-
tion of the estimated amount of overlap.
5. The computer readable medium of claim 2 wherein the
feature point matches between each of the keyframes com-
prises a “keyframe mesh.”
6. The computer readable medium of claim 4 further com-
prising generating an animated mosaic image by:
registering a sub-sequence of image frames to the static
mosaic as a function of the keyframe mesh; and

sequentially mapping the registered subsequence of
images as a dynamic overlay to the static mosaic during
playback of the animated mosaic image.

7. A system for generating mosaic images from at least one
set of sequential images of a scene, comprising using a com-
puting device to perform steps for:

receiving at least one set of sequential image frames of a

scene;

identifying the first and last image frames of each set of

sequential image frames as a keyframe;

extracting a set of feature points from each image;

for each image frame, identifying feature point matches to

an immediately preceding image;

for each image frame, identifying feature point matches to

an immediately preceding keyframe;

for each image frame, estimating an amount of overlap

with the immediately preceding keyframe and setting
the frame as a new keyframe if the estimated amount of
overlap is below a predetermined threshold;

for each frame, identifying feature point matches to an

immediately succeeding keyframe;

for each keyframe, identifying feature point matches to

every other keyframe;

generating a match structure from all of the feature point

matches;

estimating optimal image registrations from the match

structure; and

constructing a static mosaic image from the estimated opti-

mal image registrations.

8. The system of claim 7 further comprising steps for
compressing the feature point matches of the match structure
by automatically selectively replacing one or more sets of
feature point matches between one or more pairs of images
with a representative measurement corresponding to the
replaced set of feature point matches.

9. The system of claim 7 wherein the feature point matches
between each of the keyframe comprises a “keyframe mesh.”

10. The system of claim 9 further comprising steps for
generating an animated mosaic image comprising steps for:

registering a sub-sequence of image frames to the static

mosaic as a function of the keyframe mesh; and

mapping the registered subsequence of images as a

dynamic overlay to the static mosaic.

11. The system of claim 7 further comprising steps for
generating the static mosaic in real-time by sequentially per-
forming the steps of the system of claim 7 on each of a
plurality of sets of image frames bounded by immediately
neighboring keyframes.

12. The system of claim 7 further comprising steps for
setting an image frame as a new keyframe if a predetermined
maximum number of image frames has been exceeded with-
out identifying a new keyframe as a function of the estimated
amount of overlap.

13. The system of claim 11 wherein the wherein the steps
of'claim 11 are performed within a self-contained video cam-
era having an integral display device for displaying the static
mosaic in real-time.
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14. A computer-readable medium having computer-ex-
ecutable instructions for implementing the steps ofthe system
of claim 7.

15. A method for automatically generating a mosaic image

5 from a sequential set of images of a scene, comprising:
receiving set of images of a scene;

evaluating each image as it is received to identify a set of

feature points for each image;

building a match structure of image correspondences as a

10 function of the feature points identified for each image,
said match structure including matches between image
frames identified as keyframes, matches between groups
of neighboring non-keyframe image frames, and
matches between each non-keyframe image frame and
the keyframe immediately preceding and succeeding
each non-keyframe image frame;

estimating optimal image registrations from the match
structure; and

constructing a static mosaic image from the set of images
as a function of the estimated optimal image registra-

20 tions.

16. The method of claim 15 further comprising compress-
ing the match structure prior to estimating the optimal image
registrations by automatically selectively replacing one or
more sets of feature point matches between one or more pairs

25 of images with a representative measurement corresponding

to the replaced set of feature point matches.

17. The method of claim 15 wherein the matches between
image frames identified as keyframes comprise a “keyframe
mesh” and wherein an animated mosaic image is constructed

30 by:
registering a sub-sequence of image frames to the static
mosaic as a function of the keyframe mesh; and
sequentially mapping the registered subsequence of
images as a sequential dynamic overlay to the static

35 mosaic image during playback of the animated mosaic

image.

18. The method of claim 15 wherein identifying image
frames as keyframes includes at least one of:

identifying a first and last frame of the sequential set of

40 images of the scene as a keyframe;

for each image frame, estimating an amount of overlap
with the immediately preceding keyframe and setting
that image frame as a new keyframe if the estimated
amount of overlap with the immediately preceding key-
frame is below a predetermined threshold;

® for each image frame, estimating an amount of overlap
with all preceding keyframes and setting that image
frame as a new keyframe if the estimated amount of
overlap with all keyframes is below a predetermined
“ threshold; and

setting an image frame as a new keyframe if a predeter-
mined maximum number of sequential image frames
has been exceeded without identifying a new keyframe.
19. The method of claim 15 further comprising construct-
ing a preview of the static mosaic image in real-time as each
55 image in the set of images is captured by a video camera, and
displaying the preview of the static mosaic image in real-time
on a display device integral to the video camera.
20. The method of claim 15 further wherein constructing
the static mosaic image from the set of images further com-
60 prises optimizing the static mosaic image by applying at least
one of:
feathering of overlapping image frames;
image frame contrast adjustments;
image frame brightness adjustments; and
65  de-ghosting of overlapping image frames.
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