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NOISE-ROBUST FEATURE EXTRACTION
USING MULTI-LAYER PRINCIPAL
COMPONENT ANALYSIS

BACKGROUND

1. Technical Field

The invention is related to a signal feature extractor, and
in particular, to a system and method for using a “distortion
discriminant analysis” of a set of training signals to define
parameters of a feature extractor for extracting distortion-
robust features from signals having one or more dimensions,
such as audio signals, images, or video data.

2. Related Art

There are many existing schemes for extracting features
from signals having one or more dimensions, such as audio
signals, images, or video data. For example, with respect to
a one-dimensional signal such as an audio signal or audio
file, audio feature extraction has been used as a necessary
step for classification, retrieval, and identification tasks
involving the audio signal. For identification, the extracted
features are compared to a portion of an audio signal for
identifying either elements within the audio signal, or the
entire audio signal. Such identification schemes are conven-
tionally known as “audio fingerprinting.”

Conventional schemes for producing features for pattern
matching in signals having one or more dimensions typically
approach the problem of feature design by handcrafting
features that it is hoped will be well-suited for a particular
identification task. For example, current audio classification,
segmentation and retrieval methods use heuristic features
such as the mel cepstra, the zero crossing rate, energy
measures, spectral component measures, and derivatives of
these quantities. Clearly, other signal types make use of
other heuristic features that are specific to the particular type
of signal being analyzed.

For example, one conventional audio classification
scheme provides a hierarchical scheme for audio classifica-
tion and retrieval based on audio content analysis. The
scheme consists of three stages. The first stage is called a
coarse-level audio segmentation and classification, where
audio recordings are segmented and classified into speech,
music, several types of environmental sounds, and silence,
based on morphological and statistical analysis of temporal
curves of short-time features of audio signals. In the second
stage, environmental sounds are further classified into finer
classes such as applause, rain, birds’ sound, etc. This fine-
level classification is based on time-frequency analysis of
audio signals and use of the hidden Markov model (HMM)
for classification. In the third stage, the query-by-example
audio retrieval is implemented where similar sounds can be
found according to an input sample audio.

Another conventional scheme approaches audio content
analysis in the context of video structure parsing. This
scheme involves a two-stage audio segmentation and clas-
sification scheme that segments and classifies an audio
stream into speech, music, environmental sounds, and
silence. These basic classes are the basic data set for video
structure extraction. A two-stage algorithm is then used to
identify and extract audio features. In particular, the first
stage of the classification is to separate speech from non-
speech, based on simple features such as high zero-crossing
rate ratio, low short-time energy ratio, spectrum flux and
Linear Spectral Pairs (L.SP) distance. The second stage of
the classification further segments non-speech class into
music, environmental sounds and silence with a rule based
classification scheme.
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Still another conventional scheme provides an audio
search engine that can retrieve sound files from a large
corpus based on similarity to a query sound. With this
scheme, sounds are characterized by “templates™ derived
from a tree-based vector quantizer trained to maximize
mutual information (MMI). Audio similarity is measured by
simply comparing templates. The basic operation of the
retrieval system involves first accumulating and parameter-
izing a suitable corpus of audio examples into feature
vectors. The corpus must contain examples of the kinds
(classes) of audio to be discriminated between, e.g., speech
and music, or male and female talkers. Next, a tree-based
quantizer is constructed using a manually “supervised”
operation which requires the training data to be labeled, i.e.,
each training example must be associated with a class. The
tree automatically partitions the feature space into regions
(“cells”) which have maximally different class populations.
To generate an audio template for subsequent retrieval,
parameterized data is quantized using the tree. To retrieve
audio by similarity, a template is constructed for the query
audio. Comparing the query template with corpus templates
yields a similarity measure for each audio file in the corpus.
These similarity measures can then be sorted by similarity
and the results presented as a ranked list.

Another approach to feature extraction has been applied
in the area of speech recognition and speech processing. For
example, one conventional scheme provides a method for
decomposing a conventional LPC-cepstrum feature space
into subspaces which carry information about linguistic and
speaker variability. In particular, this scheme uses oriented
principal component analysis (OPCA) to estimate a sub-
space which is relatively speaker independent.

A related OPCA technique builds on the previous scheme
by using OPCA for generating speaker identification or
verification models using speaker information carried in the
speech signal. This scheme is based on a three step modeling
approach. In particular, this scheme first extracts a number
of speaker-independent feature vectors which include lin-
guistic information from a target speaker. Next, a set of
speaker-dependent feature vectors which include both lin-
guistic and speaker information are extracted from the target
speaker. Finally, a functional mapping between the speaker-
independent and the speaker-dependent features is computed
for transforming the speaker-independent features into
speaker-dependent features to be used for speaker identifi-
cation.

However, while the aforementioned schemes are useful,
they do have limitations. For example, a feature extractor
system designed with heuristic features such as those dis-
cussed above is not typically optimal across multiple types
of distortion or noise in a signal. In fact, different features
than those selected or extracted often give better perfor-
mance, or are more robust to particular types of noise or
distortion. Further, with respect to the OPCA based schemes,
these schemes do not effectively address noise or distortions
in the signal being analyzed over wide temporal or spatial
windows.

Therefore, what is needed is a system and method for
extracting features from a set of representative training data
such that the features extracted will be robust to both
distortion and noise when used for feature classification,
retrieval, or identification tasks involving an input signal.

SUMMARY

A system and method for extracting features from signals
having one or more dimensions for use in classification,
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retrieval, or identification of the data represented by those
signals uses a “Distortion Discriminant Analysis” (DDA) of
a set of training signals to define parameters of a signal
feature extractor. Note that in the context of this description,
a “signal” is defined to be any set of data that has a
low-dimensional index set. In general, the signal feature
extractor is capable of extracting features from any time,
space, or frequency domain signal of one or more dimen-
sions. For example, such signals include an audio signal
which is considered to be a one-dimensional signal; an
image is which considered to be a two-dimensional signal;
and video data which is considered to be a three-dimensional
signal. Thus, the term signal, as used throughout this
description will be understood to mean a signal of any
dimensionality, except where particular signal types are
explicitly referred to.

The signal feature extractor described herein takes any
signal with a temporal or spatial structure, applies an ori-
ented principal component analysis (OPCA) to limited
regions of the signal, aggregates the output of multiple
OPCAs that are spatially or temporally adjacent, and then
applies OPCA to the aggregate. The steps of aggregating
adjacent OPCA outputs and applying OPCA to the aggre-
gated values can be performed one or more times. Conse-
quently, the use of two or more OPCA layers allows for the
extraction of low-dimensional noise-robust features from a
signal, such as, for example, audio signals, images, video
data, or any other time, space, or frequency domain signal.
Such extracted features are useful for many tasks, including,
for example, automatic authentication or identification of
particular signals, or particular elements within such signals.
For example, with respect to an audio signal, the DDA
system described herein is capable of identifying particular
songs or audio clips, either individually, or as a part of a
continuous or semi-continuous audio stream. Other
examples using audio data include, for example, speaker
identification or differentiation, speech recognition, etc.

“Distortion Discriminant Analysis,” (DDA), is a novel
concept which addresses several primary concerns, as
detailed below. In general, DDA can be viewed as a multi-
layer linear convolutional neural network, where the weights
are trained using a modified Oriented Principal Components
Analysis (OPCA) rather than by other well-known tech-
niques such as back-propagation. Each DDA layer applies
OPCA to maximize a signal-to-noise ratio of its output, with
a corresponding dimensional reduction of the input. Two or
more DDA layers are aggregated in order to enforce shift
invariance, to reduce computation time, and to build in
robustness to noise and distortion at different temporal or
spatial scales. Note that in an alternate embodiment, the
DDA system and method described herein operates to con-
struct a non-linear convolutional neural network rather than
a linear convolutional neural network.

Further, while the DDA system and method is described
herein with respect to extraction of features from audio
signals, the general concepts described with respect to
extraction of audio features are applicable to any signal
having one or more dimensions, as noted above. Thus, a
simple working example of the DDA system and method
described herein is implemented in an audio signal feature
extractor which provides distortion-robust audio features
vectors for classification, retrieval or identification tasks
while addressing several primary concerns.

First, computational speed and efficiency of the signal
feature extractor is enhanced by using multiple layers of
OPCA. Second, the features resulting from the signal feature
extractor are robust to likely distortions of the input, thereby
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reducing potential errors in classification, retrieval, or iden-
tification tasks using those features. In particular, the feature
vectors produced as a result of the DDA are robust to likely
distortions of the input, including, in many cases, distortions
for which the system has not been explicitly trained. For
example, with respect to a broadcast audio signal, most radio
stations introduce nonlinear distortions and time compres-
sion into the audio signal before broadcasting. Other audio
signal type distortions include noise from any of a number
of sources, such as, for example, interference or microphone
noise.

It should be noted, that as described in detail below, the
DDA-based convolutional neural network can be trained on
any desired distortion or noise, or any combination of
distortions or noise and distortions. Third, the features are
informative for the task at hand, i.e., they work well for
classification, retrieval, or identification tasks with respect to
a given audio input. For example, in the case of audio
identification, different audio clips should map to features
that are distant, in some suitable metric, so as to reduce
potential false positive identifications. Again, it should be
noted that the general approach, as described with respect to
the extraction of features from an audio signal are fully
applicable to other signal types.

Finally, in one embodiment, the feature extraction opera-
tion is designed to be computationally efficient. For
example, in one embodiment, the feature extraction opera-
tion is designed such that it uses only a small fraction of the
computational resources available on a typical PC.

To begin the DDA, in one embodiment, prior knowledge
of distortions and noise in the signal are used to design a
pre-processor to DDA. This pre-processor then uses any of
a number of conventional techniques to remove those dis-
tortions or noise that can be removed using conventional
algorithms. For example, in an audio signal, where equal-
ization is a known distortion of the signal, then de-equal-
ization is performed by the pre-processor.

The DDA then sets the parameters of the feature extractor
using layered OPCA. In particular, as noted above, a system
and method for noise-robust feature extraction for use in
classification, retrieval, or identification of data uses a
Distortion Discriminant Analysis (DDA) of a set of training
signals and one or more distorted versions of that training set
to define parameters of a feature extractor. The distortions
applied to the training signals can be any desired distortion,
or combination of distortions or noise, either natural or
artificial. Note that using distorted sample input signals is
less stringent and more general than requiring that a real
noise model is known. Further, it should be noted that DDA
does not assume that the distortion is additive: non-linear
distortions are also handled. In addition, as noted above,
DDA can generalize beyond the given set of distorted
training signals to be robust against distortions that are not
in the training set.

The feature extractor described herein then uses two or
more OPCA layers for extracting low-dimensional noise-
robust features from audio data. As noted above, DDA can
be viewed as a multi-layer linear convolutional neural
network, where the weights are trained using a modified
Oriented Principal Components Analysis (OPCA) to reduce
the dimensionality of the audio input and maximize a
signal-to-noise ratio of its output. Two or more DDA layers
are aggregated in order to enforce shift invariance, to reduce
computation time, and to build in robustness to noise and
distortion at different time or space scales. Feature extractors
learned with DDA address each of the concerns listed above.
Namely, the learned feature extractor reduces the dimen-
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sionality of the input signal; the resulting features are robust
to likely distortions of the input; the features are informative
for the task at hand; and finally, the feature extraction
operation is computationally efficient.

Finally, in a tested embodiment of the present invention,
the robustness of the DDA feature extractor is demonstrated
by applying extracted features to identity known audio
segments in an audio stream. Such identification is called
“stream audio fingerprinting.” In stream audio fingerprint-
ing, a fixed-length segment of the incoming audio stream is
converted into a low-dimensional trace (a vector). This input
trace is then compared against a large set of stored, pre-
computed traces, i.e., the extracted audio features, where
each stored trace has previously been extracted from a
particular audio segment (for example, a song). In addition,
the input traces are computed at repeated intervals and
compared with the database. The stored pre-computed traces
are called “fingerprints,” because they are used to uniquely
identify particular audio segments.

Note that in one embodiment, the audio fingerprinting
system described herein uses only a single fingerprint per
audio clip for identification. However, in an alternate
embodiment, two fingerprints are used: the initial one, and
a ‘confirmatory’ fingerprint, right after the initial one. The
use of the second fingerprint is useful for several reasons.
First, the use of a second fingerprint allows a threshold for
acceptance to be lowered. For example, given a lower
threshold for comparison between traces, more traces are
accepted for the first fingerprint, while the use of a second
fingerprint provides for a more robust identification while
also reducing the number of patterns which are incorrectly
rejected by having a comparison threshold which is set too
high with respect to the first fingerprint. In other words, the
use of two fingerprints serves to reduce a false negative rate.
Clearly, this embodiment is extensible to the use of even
further numbers of fingerprints for trace identification,
thereby further reducing identification error rates.

In addition to the just described benefits, other advantages
of'the signal feature extractor will become apparent from the
detailed description which follows hereinafter when taken in
conjunction with the accompanying drawing figures.

DESCRIPTION OF THE DRAWINGS

The specific features, aspects, and advantages of the
signal feature extractor will become better understood with
regard to the following description, appended claims, and
accompanying drawings where:

FIG. 1 is a general system diagram depicting a general-
purpose computing device constituting an exemplary system
for implementing a signal feature extractor.

FIG. 2A illustrates an exemplary architectural diagram
showing exemplary program modules for training a feature
extractor for extracting features from signals having one or
more dimensions.

FIG. 2B illustrates an exemplary architectural diagram
showing exemplary program modules for using the feature
extractor of FIG. 2A for identification of signals, including
creation of a feature or “fingerprint” database and compari-
son of fingerprints.

FIG. 3 illustrates an exemplary flow diagram for training
a signal feature extractor to extract noise and distortion
robust signal feature vectors.

FIG. 4 illustrates an exemplary flow diagram for using
extracted noise and distortion robust signal feature vectors
for evaluating a signal input.
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FIG. 5 is a diagram which illustrates the architecture of
the DDA system, showing use of layered OPCA projections
in a tested embodiment of an audio identification system
employing the signal feature extractor.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description of the preferred embodiments
of the present invention, reference is made to the accompa-
nying drawings, which form a part hereof, and in which is
shown by way of illustration specific embodiments in which
the invention may be practiced. It is understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the present
invention.

1.0 Exemplary Operating Environment

FIG. 1 illustrates an example of a suitable computing
system environment 100 on which the invention may be
implemented. The computing system environment 100 is
only one example of a suitable computing environment and
is not intended to suggest any limitation as to the scope of
use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any
dependency or requirement relating to any one or combina-
tion of components illustrated in the exemplary operating
environment 100.

The invention is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited
to, personal computers, server computers, hand-held, laptop
or mobile computer or communications devices such as cell
phones and PDA’s, multiprocessor systems, microproces-
sor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, distributed computing environments that include any
of the above systems or devices, and the like.

The invention may be described in the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc., that perform particular tasks or implement par-
ticular abstract data types. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote computer storage media including
memory storage devices. With reference to FIG. 1, an
exemplary system for implementing the invention includes
a general-purpose computing device in the form of a com-
puter 110.

Components of computer 110 may include, but are not
limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components
including the system memory to the processing unit 120.
The system bus 121 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.
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Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes volatile and nonvolatile removable and non-
removable media implemented in any method or technology
for storage of information such as computer readable
instructions, data structures, program modules or other data.

Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computer 110.

Communication media typically embodies computer
readable instructions, data structures, program modules or
other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during
start-up, is typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 illustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to a removable, nonvolatile magnetic disk 152, and
an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM
or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is
typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 is illustrated as storing oper-
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ating system 144, application programs 145, other program
modules 146, and program data 147. Note that these com-
ponents can either be the same as or different from operating
system 134, application programs 135, other program mod-
ules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and
program data 147 are given different numbers here to
illustrate that, at a minimum, they are different copies.

A user may enter commands and information into the
computer 110 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus 121, but may
be connected by other interface and bus structures, such as
a parallel port, game port or a universal serial bus (USB). A
monitor 191 or other type of display device is also connected
to the system bus 121 via an interface, such as a video
interface 190. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
197 and printer 196, which may be connected through an
output peripheral interface 195.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 110, although only a memory
storage device 181 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments
are commonplace in offices, enterprise-wide computer net-
works, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

The exemplary operating environment having now been
discussed, the remaining part of this description will be
devoted to a discussion of the program modules and pro-
cesses embodying a signal feature extractor for providing
feature vectors for use in classification, retrieval, or identi-
fication of data in signals having one or more dimensions.

2.0 Introduction

Feature extraction is a necessary step for classification,
retrieval, and identification tasks with respect to portions of
an input signal. A system and method for extracting features
from signals of one or more dimensions, such as, for
example, audio signals, images, video data, or any other
time or frequency domain signal, uses a “Distortion Dis-
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criminant Analysis” (DDA) of a set of training signals to
define parameters of a signal feature extractor. Note that in
the context of this description, a “signal” is defined to be any
set of data that has a low-dimensional index set. In general,
the signal feature extractor is capable of extracting features
from any time, space, or frequency domain signal of one or
more dimensions. For example, such signals include an
audio signal which is considered to be a one-dimensional
signal; an image is which considered to be a two-dimen-
sional signal; and video data which is considered to be a
three-dimensional signal. Thus, the term signal, as used
throughout this description will be understood to mean a
signal of any dimensionality, except where particular signal
types are explicitly referred to.

In particular, the signal feature extractor described herein
takes any signal with a temporal or spatial structure, applies
an oriented principal component analysis (OPCA) to limited
regions of the signal, aggregates the output of multiple
OPCAs that are spatially or temporally adjacent, and then
applies OPCA to the aggregate. The steps of aggregating
adjacent OPCA outputs and applying OPCA to the aggre-
gated values can be performed one or more times.

The use of two or more OPCA layers allows for the
extraction of low-dimensional noise-robust features from a
signal. Such extracted features are useful for many tasks,
including, for example, automatic authentication or identi-
fication of particular signals, or particular elements within
such signals. For example, with respect to an audio signal,
a tested embodiment of the DDA system described herein is
capable of identifying particular songs or audio clips, either
individually, or as a part of a continuous or semi-continuous
audio stream. Other examples regarding DDA analysis of
audio data include, for example, speaker identification or
differentiation, speech recognition, etc. As noted above,
DDA analysis can also be performed on multi-dimensional
signals, such as images or video, or any other time, space, or
frequency domain signal.

In general, the signal feature extractor described herein
uses DDA to provide distortion-robust feature vectors.
DDA, as described below, constructs a multi-layer linear,
convolutional neural network, with each layer performing an
Oriented Principal Components Analysis (OPCA) for
dimensional reduction of the input while also maximizing a
signal-to-noise ratio of its output. In particular, two or more
DDA layers are aggregated in order to enforce shift invari-
ance, to reduce computation time, and to build in robustness
to noise and distortion at different temporal or spatial scales.
Note that in an alternate embodiment, as described in further
detail below, the DDA system and method described herein
operates to construct a non-linear convolutional neural net-
work rather than a linear convolutional neural network.

Further, while the DDA system and method is described
herein with respect to extraction of features from audio
signals, the general concepts described with respect to
extraction of audio features is applicable to any signal, as
noted above. Thus, a simple tested embodiment of the DDA
system and method described herein is implemented in an
audio signal feature extractor which provides distortion-
robust audio features vectors for classification, retrieval or
identification tasks while addressing several primary con-
cerns.

First, computational speed and efficiency of the signal
feature extractor is enhanced by using multiple layers of
Oriented Principal Component Analysis (OPCA), as
described in detail below. The use of multiple layers allows
for a significant reduction in a dimensionality of the input
signal. For example, in the case of audio fingerprinting for
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an audio stream, a working example of the signal feature
extractor was used to reduce the input dimensionality of the
audio signal by a factor of 8000. Such a reduction using a
single step of OPCA would be computationally prohibitive,
both for training and for real-time feature extraction.

Second, the features resulting from the signal feature
extractor are robust to likely distortions of the input, thereby
reducing potential errors in classification, retrieval, or iden-
tification tasks using those features. In particular, the feature
vectors produced as a result of the DDA are robust to likely
distortions of the input, including, in many cases, distortions
for which the system has not been explicitly trained. For
example, using an audio signal for illustrative purposes,
distortions can affect the audio signal for many reasons,
including the fact that most radio stations introduce nonlin-
ear distortions and time compression into the audio signal
before broadcasting. Other audio-type distortions include
noise from any of'a number of sources, such as, for example,
interference or microphone noise. It should be noted, that as
described in detail below, the DDA-based convolutional
neural network can be trained on any desired distortion or
noise, or any combination of distortions or noise and dis-
tortions. Further, different distortions, or different combina-
tions of distortions or noise, can be trained at each layer of
the DDA-based convolutional neural network. Again, it
should be noted that the general approach, as described with
respect to the extraction of features from an audio signal are
fully applicable to other signal types.

Third, the features are informative for the task at hand,
i.e., they work well for classification, retrieval, or identifi-
cation tasks with respect to a given audio input. For
example, in the case of audio identification, different audio
clips should map to features that are distant, in some suitable
metric, so as to reduce potential false positive identifica-
tions. The use of OPCA in the layers of the DDA serves to
maximize the signal variance, thereby driving the features to
be as informative as possible.

Finally, in one embodiment, the feature extraction opera-
tion is designed to be computationally efficient. For
example, in one embodiment, the feature extraction opera-
tion is designed such that it uses only a small fraction of the
computational resources available on a typical PC.

2.1 System Overview

In general, a system and method for signal feature extrac-
tion for use in classification, retrieval, or identification of
elements or segments of a data signal uses a Distortion
Discriminant Analysis (DDA) of a set of training signals to
defire parameters of a signal feature extractor. The signal
feature extractor described herein then uses two or more
OPCA layers for extracting low-dimensional noise-robust
features from the data. As noted above, DDA can be viewed
as a linear convolutional neural network, where the weights
are trained using oriented Principal Components Analysis
(OPCA) to reduce the dimensionality of the signal input.
Further, each DDA layer applies OPCA to maximize a
signal-to-noise ratio of its output. Two or more OPCA layers
are used in order to enforce shift invariance, to reduce
computation time, and to build in robustness to noise and
distortion at different time scales.

To begin, in one embodiment, prior knowledge of the
distortions and noise in the signal are used to design a
pre-processor to DDA. This preprocessor serves to remove
those distortions or noise from the signal by using any of a
number of well-known conventional signal processing tech-
niques. For example, given an audio signal, if equalization
is a known distortion of the signal, then de-equalization is
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performed by this embodiment. Similarly, given an image
input, if contrast and brightness variations are known dis-
tortions of the signal, then histogram equalization is per-
formed by this embodiment.

Distortion Discriminant Analysis (DDA) then sets the
parameters of the feature extractor using layered OPCA as
described in further detail below. Feature extractors learned
with DDA address each of the concerns noted above.
Namely, the learned feature extractor reduces the dimen-
sionality of the input signal; the resulting features are robust
to likely distortions of the input; the features are informative
for the task at hand; and finally, the feature extraction
operation is computationally efficient.

DDA is trained using a set of representative training
signals and one or more distorted versions of those training
signals. The set of representative training signals is simply
a set of data which is chosen because it is typical or generally
representative of the type of data which is to be analyzed.
Note that the data used for training does not have to be the
same as the data that is to be analyzed. For example, there
is no need to train the feature extractor using segments of the
same songs which are to be passed to the feature extractor
for extracting features. Furthermore, the type of training data
does not have to even match the type of data expected in test
phase; for example, a system trained using pop music can be
used to extract features from classical music.

The distortions applied to the training signals can be any
desired distortion, or combination of distortions or noise.
Using distorted samples of the input signals is less stringent
and more general than requiring that a real noise model is
known. Further, it should be noted that DDA does not
assume that the distortion is additive: non-linear distortions
are also handled. As discussed below in Section 3, DDA can
generalize beyond the given set of distorted training signals
to be robust against distortions that are not in the training set.

Finally, in a tested embodiment the robustness of the DDA
feature extractor was examined by applying extracted fea-
tures to identify known audio segments in an audio stream.
Audio identification enabled by this audio feature extractor
is termed “stream audio fingerprinting.” In stream audio
fingerprinting, a fixed-length segment of the incoming audio
stream is converted into a low-dimensional trace (a vector).
This input trace is then compared against a large set of
stored, pre-computed traces, i.e., the extracted audio fea-
tures, where each stored trace has previously been extracted
from a particular audio segment, such as a song, after initial
training of the feature extractor using a set of training signals
representative of the audio to be examined. In addition, the
input traces are computed at repeated intervals and com-
pared with the database. The pre-computed traces are called
“fingerprints,” because they are used to uniquely identify
particular audio segments. Note that while the audio finger-
printing system described herein uses only a single finger-
print per audio clip for identification, identification error
rates are further reduced in alternate embodiments by using
several fingerprints per audio clip for identification.

2.2 System Architecture

The process summarized above is illustrated by the gen-
eral system diagrams of FIG. 2A and FIG. 2B. In particular,
the system diagram of FIG. 2A illustrates the interrelation-
ships between program modules for implementing a DDA-
based feature extractor. Further, FIG. 2B illustrates alternate
embodiments of the feature extractor as used in a feature
analysis system. It should be noted that the boxes and
interconnections between boxes that are represented by
broken or dashed lines in FIG. 2A and FIG. 2B represent
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alternate embodiments of the invention, and that any or all
of these alternate embodiments, as described below, may be
used in combination with other alternate embodiments that
are described throughout this document.

In particular, as illustrated by FIG. 2A, a system and
method for DDA-based feature extraction begins, in one
embodiment, by providing one or more training signal
inputs 200 from a computer file or input device to a
pre-processor module 205 for removing known distortions
or noise from the training signal input 200 by using any of
a number of well-known conventional signal processing
techniques. For example, given an audio signal, if equaliza-
tion is a known distortion of the signal, then de-equalization
is performed by this embodiment. Similarly, given an image
signal, if contrast and brightness variation is a known
distortion of the signal, then histogram equalization is per-
formed by this embodiment.

Next, whether or not the training input signal 200 has
been pre-processed as described above, the training input
signal is provided to a distortion module 210. The distortion
module 210 then applies any desired distortion or noise to
the training data to produce at least one distorted copy of the
training signal input 200. For example, again using an audio
signal for purposes of discussion, such distortions include
low-pass, high-pass, band-pass, and notch filters, com-
panders, noise effects, temporal shifts, phase shifts, com-
pression, reverb, echo, etc. For image signals, such distor-
tions include, for example, scaling, rotation, translation,
thickening, and shear.

The distorted training signal inputs are then provided to a
DDA training module 220. In addition, undistorted training
data is provided directly to the DDA training module 220
either from the training signal input 200, or via the prepro-
cessor module 205. In an alternative embodiment, distorted
signals are captured directly from an input source. For
example, again using an audio signal for purposes of dis-
cussion, such distorted versions of an audio input are cap-
tured directly from an input source, such as a radio broad-
cast. This alternative embodiment does not require use of the
distortion module 210. For example, copies of a particular
song or audio clip captured or recorded from several differ-
ent radio or television broadcasts typically exhibit different
distortion and noise characteristics for each copy, even if
captured from the same station, but at different times. Thus,
the different copies are typically already sufficiently dis-
torted to allow for a distortion discriminant analysis that will
produce robust features from the training data, as described
in further detail below.

As noted above, the DDA training module 220 receives
both distorted and undistorted copies of the training input
signal 200. Finally, once the DDA training module 220 has
both the undistorted training data and the distorted copies of
the training data, it applies DDA to the data to derive
multiple layers of OPCA projections, which are supplied to
a feature extraction module 230. At this point, the feature
extractor embodied in the feature extraction module 230 has
been fully trained and is ready for use in extracting features
from one or more input signals.

Next, as illustrated in FIG. 2B, in one embodiment, the
feature extraction module 230 applies the multiple layers of
OPCA projections to a set of known data 235 to produce a
set of known features. For example, with respect to an audio
signal comprised of songs, the known data would represent
one or more known songs that when passed through the
DDA trained feature extraction module 230 will produce
features which then correspond to the known data 235. In
one embodiment, these extracted or “learned” features are
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then provided to an exemplary feature database 240 for
subsequent use in any of a number of classification,
retrieval, and identification tasks involving a signal input
250. Note that the extraction of features from both the input
signal 250 and the set of known data 235 are accomplished
using an identical process. In other words, the feature
extractor, once trained, extracts features from whatever
signal is provided to it in the same manner.

For example, in an “audio fingerprinting system” using
the feature extraction module 230, known data 235, such as,
for example a number of known songs, are first passed
through the DDA trained feature extraction module 230. The
DDA trained feature extraction module 230 then outputs
features which, in one embodiment, are stored in the exem-
plary feature database 240. Then, when a stream of audio is
to be identified, that stream of audio is provided as the input
signal 250. Again using the audio stream as the input signal
250, in one embodiment, the output of the feature extraction
module 230, is then compared by a feature comparison
module 260 to the features in the exemplary feature database
240 for the purpose of identifying portions or segments of
the audio input signal 250 corresponding to the extracted
features. In another embodiment, the results are then pro-
vided to a conventional storage or display device via a
results module 270 for providing the results to a user or other
computer application for further processing.

In still another embodiment, the use of a known data set
is not necessary for identification tasks. In particular, using
only the input signal 250, repeat instances of objects embed-
ded in the signal, or repeat instances of particular segments
or portions of the signal are located by simply storing the
features extracted from the input signal, and searching
through those features for locating or identifying matching
features. Such matches can be located even though the
identity or content of the signal corresponding to the match-
ing features is unknown.

In still another embodiment, the feature comparison mod-
ule 260 shown in FIG. 2B is used to automatically identify
data that is duplicated in a large database. For example, if a
large database of audio has been automatically constructed,
there may exist many copies of the same piece of audio, each
with a different (or no) name. In this embodiment, the
feature extraction module 230 generates a fingerprint for
each audio clip in the database and then uses the feature
comparison module 260 to test against the rest of the
database to automatically identify such duplicates, thus
significantly reducing the time required to do this manually.

Note that in further embodiments, the pre-processor mod-
ule 205 is used for removing known distortions or noise
from both the signal input 250 and the known data 235. As
described above, the distortions are removed using any of a
number of well-known conventional signal processing tech-
niques.

3.0 Operation Overview

The above-described system architecture employs a DDA
training module which executes a DDA training process to
train a feature extraction module for extracting features from
an input signal. This process is depicted in the flow diagram
of FIG. 3, as described below in Section 3.3, following a
detailed operational discussion of exemplary methods for
implementing the aforementioned DDA training module.
Note that in this written description of the signal feature
extractor, vectors are denoted in bold font and their com-
ponents in normal font, while a prime denotes the transpose.
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3.1 Oriented Principal Components Analysis (OPCA)

The concepts of OPCA are known to those skilled in the
art. However, the form of OPCA used in the feature extractor
is modified from conventional OPCA so that it is more
suitable for use with the feature extractor described herein.

In particular, given a set of vectors X =R ,, i=1, ... ,m, where
each x, represents a signal, suppose that for each x, there
exists a set of N distorted versions %/, k=1, . . . N of the

signal. The corresponding difference vectors are defined as
7/=%—x, (referred to as ‘noise’ below). In order to maxi-
mize the signal-to-noise ratio while reducing the dimension-
ality of the input signal, it is necessary to find linear
projections of the input signal which are in some sense as
orthogonal as possible to the Z,* for all k, but along which the
variance of the original signal x; is simultaneously maxi-
mized. The unit vectors defining the desired projections are
denoted by n_.q=1, . . . ,M where M is chosen by the user.
For purposes of simplifying the following discussion only,
set M=1, but note that M can be any desired value.

By analogy with a conventional Principal Components
Analysis (PCA), a feature extractor n can be constructed
which minimizes the mean squared reconstruction error

%Z‘. o =%

where X,;=(X-n),n. It is straightforward to show that the n that
solves this problem is an eigenvector of C,-C,, where C,,
C, are the correlation matrices of the 7, and x, respectively.

However such a feature extractor has the unfortunate
property that the direction n will change if the noise and
signal vectors are globally scaled with two different scale
factors. Consequently, the feature extractor described herein
makes use of Oriented Principal Components Analysis
(OPCA). As is known to those skilled in the art, the OPCA
directions are defined as those directions n that maximize the
generalized Rayleigh ratio:

n'Cin Equation 1

- nCon

where C, is the covariance matrix of the signal and C, is the
correlation matrix of the noise. In contrast to the conven-
tional form of OPCA, the feature extractor described herein
uses a correlation matrix of the noise rather than the cova-
riance matrix of the noise in order to penalize the mean of
the noise signal as well as its variance. Consider, for
example, noise that has zero variance but nonzero mean: It
is still desirable to find directions that are orthogonal to the
mean vector. Towards this end, C, and C, are defined as
follows:

Equation 2

Equation 3

The numerator in Equation (1) is the variance of the pro-
jection of the training data along the unit vector n, while the
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denominator is the projected mean squared error, i.e., the
mean squared modulus of all difference vectors z,* projected
along n.

The directions n, can now be found by setting VR=0,
which gives the generalized eigenvalue problem:

Cn=RCon Equation 4
3.2 Distortion Discriminant Analysis

For high dimensional data, such as audio data, OPCA can
be applied in layers. For example, consider the extraction of
a 64 dimensional fingerprint from 6 seconds of audio. If the
audio signal is first converted to mono and downsampled to
11.025 KHz, the subsequent feature extraction must map a
vector of dimension 66,150 to a vector of dimension 64.
Directly solving the generalized eigenvalue problem (Equa-
tion 4) in this case is infeasible using conventional PC-type
computers. Note that downsampling and conversion from
multi-channel audio to single channel audio is not necessary
in order to implement the audio feature extractor described
herein. However, without downsampling and conversion to
a single audio channel the subsequent feature extraction
must map a vector having a significantly larger dimension,
thereby making the problem even more computationally
expensive. Again, as noted above, while the DDA system
and method is described herein with respect to extraction of
features from audio signals, the general concepts described
with respect to extraction of audio features is applicable to
any temporal or spatial signal having one or more dimen-
sions.

In order to reduce the computational expense of solving
the generalized eigenvalue problem (Equation 4), OPCA is
applied in at least two layers, where the first layer operates
on a log spectrum computed over a small window and the
second layer operates on a vector computed by aggregating
vectors produced by the first layer over time.

In particular, this layered OPCA approach can be
described as follows: First, the eigenvectors computed using
OPCA have a fixed dimensionality that is the same as the
dimension of the frame of data used to compute them using
OPCA. Following the OPCA for each frame the training
signal, a number N of the top eigenvectors are then chosen
for each frame. Projecting individual frames of data along
these eigenvectors then produces a group of N projections
for each frame. In one embodiment, each of the N projec-
tions is then is normalized. These groups of N projections
are then aggregated over several frames to produce an
aggregate. This aggregate is then used as a new frame that
is again used to compute a new set of eigenvectors using
OPCA, with the top N eigenvectors again being chosen for
each frame. These steps are then repeated for as many OPCA
layers as desired.

This novel approach is entitled “Distortion Discriminant
Analysis” (DDA). DDA is a linear method, and the projec-
tions that occur in a given layer may be viewed as a
convolution. Thus DDA may be viewed as a linear convo-
Iutional neural network, where the weights are chosen using
OPCA. However, in one embodiment, as discussed in fur-
ther detail in Section 3.4, DDA uses non-linear layers, to
further reduce false positive and false negative rates for
signal identification when matching extracted features.

In DDA, each subsequent layer sees a wider temporal or
spatial window than the last, while the eigen-directions
found for each particular layer are ideally suited to that
particular temporal or spatial scale. This is an important
feature of DDA; for example, as described below, it is used
in a tested embodiment for analyzing audio signals to
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compensate for alignment noise. Alignment noise is defined
here to be the noise resulting from the fact that a stored
fingerprint can be temporally out of phase with the input
traces. In the worst case, the fingerprint will have been
computed from a frame which lies halfway between two
frames used to compute two adjacent input traces. Compen-
sation for such temporal distortions in a DDA system is
preferably applied on the last layers, since they see the
widest temporal windows.

Note that with the DDA system described herein, the
feature extraction system avoids potential aliasing problems
in temporal or spatial signals for the reasons described
below. In particular, there is no aliasing because there are no
intermediate layers having a reduced sampling rate. Conse-
quently, both layers have the same effective sampling rate.
Thus, the issue of aliasing is avoided. Note that the vector
sizes of the first and subsequent layers are not fixed. In
particular, so long as each layer has the same temporal (or
spatial) sampling rate, in the manner described above, the
issue of aliasing is avoided regardless of the number of
layers used.

In one embodiment, using temporal data such as an audio
signal, the DDA is trained to compensate for temporal
misalignment between a stored feature extracted from the
training data and an audio trace from the test data by adding
an extra distortion to the training of the last layer. Such
training can be accomplished simply by shifting the audio
input window forward and back by some fraction of a frame,
then providing this shifted audio to the DDA as one of the
“distorted” versions of the training data as described above.

DDA not only makes the test phase computationally
efficient, and allows the compensation of distortions at
different time scales; it is also efficient in the training phase.
The required covariance and correlation matrices can be
computed one vector at a time. These matrices can thus be
estimated using an arbitrarily large amount of data. After the
matrices are estimated, the generalized eigenvalues are
computed using conventional numerical linear algebra tech-
niques which are well known to those skilled in the art.

3.3 System Operation

As noted above, the DDA module described in Section 2.0
with reference to FIG. 2A is employed to train an audio
feature extractor using a convolutional neural network
employing layered OPCA. Further, one possible use of the
feature extractor of FIG. 2A is illustrated by the general
architectural diagram of FIG. 2B. These processes are
depicted in the flow diagrams of FIG. 3 and FIG. 4,
respectively. It should be noted that the boxes and intercon-
nections between boxes that are represented by broken or
dashed lines in FIG. 3 and FIG. 4 represent alternate
embodiments of the present invention, and that any or all of
these alternate embodiments, as described below, may be
used in combination.

Referring now to FIG. 3 in combination with FIG. 2, the
process can be generally described as system for learning
noise robust features from training data for use in a signal
analysis or identification system. In particular, as illustrated
by FIG. 3, a feature extractor is trained for extracting
features from a signal by first gathering representative
training data 300. Next, in one embodiment, the training data
300 is distorted 310. Alternately, as noted above, assuming
that the training data 300 is already distorted, no additional
distortions are necessary. Either way, the distorted data, 310,
along with copies of undistorted data 320 from the training
signal 300 is then converted into a desired input represen-
tation 330. For example, conversion into a desired input
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representation 330 includes any of downsampling the data,
converting multi-channel audio to mono audio, pre-process-
ing the data (see Section 3.5), such as, for example to
remove non-audible psychoacoustic audio components, etc.
Similarly, for image signals, conversion to a desired input
representation can comprise, e.g., taking overlapping fixed-
sized rectangular segments from an image and representing
them as vectors of pixels.

Next, a layer of distortion discriminant analysis 340 is
performed on the data using the modified OPCA procedure
described above. After performing the modified OPCA
procedure 340 on the data, the directions or vectors with the
N largest eigenvalues are chosen 350.

Next, in one embodiment, normalization parameters for
the N largest eigenvalues are computed 360. In a tested
embodiment, after the top N directions are applied to the
training data, each direction is normalized to have zero mean
over the training data and unit variance over the distorted
copies of the training data. The directions 350 plus the
normalization parameters computed at step 360 are then
output as the parameters for the current DDA layer in the
feature extractor 375.

At this point, a decision is made 370 as to whether an
additional layer of DDA will be performed on the training
data. Note that as discussed above, at least one additional
layer of DDA is always performed, as there are a minimum
of two layers of DDA. If further DDA is to be done on the
data, then the normalized data is collated into larger tem-
poral or spatial windows 380 to find features at a larger
scale. Next, the training data 300 is again distorted 310, this
time using new or different distortions, or alternately, more
already distorted versions are simply retrieved from the
training data 300, followed by the steps described above for
ultimately choosing the top N directions 350, computing
normalization constants 360, and then providing these
parameters for the DDA layer in the feature extractor 375.

Note that on the second and subsequent iterations through
the loop, step 330 includes applying all of the previous
OPCA layers, in order, to the distorted training data 310 and
the undistorted training data 320 until the input to the
currently learned layer is computed. The steps described
above are then repeated, as illustrated by FIG. 3, until such
time as it is no longer desired to compute another DDA layer
from the distorted training data. Note that the same number
of iterations or layers used for this initial training of the
feature extractor is used again for processing of any signals
which are subsequently passed through the trained feature
extractor.

Referring now to FIG. 4, the process continues in another
embodiment by providing for analysis of signal data using
the feature extractor trained as described above with refer-
ence to FIG. 3. In particular, a system for extracting features
from the trained feature extractor is illustrated by the flow
diagram of FIG. 4. Specifically, as illustrated by FIG. 4, the
evaluation process of extracting features from a test signal
400 begins by providing the test signal 400 to be pre-
processed 410. For example, with respect to pre-processing
an audio signal, as described in detail in Section 3.5,
pre-processing includes any of downsampling the data,
converting multi-channel audio to mono audio, removing
non-audible psychoacoustic audio components, etc. As
noted above, preprocessing 410 is an optional step, but it
serves to further reduce the dimensionality of the audio data,
thereby decreasing computational requirements and improv-
ing system performance. However, if pre-processing was
applied to the signal when training the feature extractor, as
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discussed above, then the same pre-processing 410 is
repeated using the test signal 400.

Once the data has been pre-processed, projections are
extracted 420 from each audio clip in the test data 400 using
N projections chosen during training (see Box 350 of FIG.
3). The projections computed at this step 420 are then
optionally normalized 430, using the normalization param-
eters computed during training of the feature extractor (see
Box 360 of FIG. 3). At this point, a decision is made 440 as
to whether an additional layer of DDA will be performed on
the data. Note that the same number of iterations or layers
used for the initial training of the feature extractor is used
again for processing of any signals which are passed through
the trained feature extractor. Further, the layers computed in
training the feature extractor are applied in the order in
which they were computed.

If no further DDA is to be done, then the normalized
output of the projections 430 are output as the extracted
signal features 450. However, if further DDA is to be done
on the data, then the normalized projections are collated into
larger spatial or temporal windows 460 to examine larger
temporal or spatial windows, depending upon the signal
type. Next, the collated projections are processed by the next
layer of the DDA, thereby producing another set of projec-
tions, which is again optionally normalized. Further, as
noted above, the same number of iterations or layers used for
the initial training of the feature extractor is used again for
processing of any signals which are passed through the
trained feature extractor, with the layers computed in train-
ing the feature extractor being applied in the order in which
they were computed. The steps described above are then
repeated, as illustrated by FIG. 4, until such time as all of the
layers of the DDA have been computed.

Note that for purposes of comparison to known data, a set
of' known data 405 is passed through the signal extractor 410
through 450 in exactly the same manner as described above
for the test signal. However, given that the known data 405
is known, the features extracted are also known. Conse-
quently, in one embodiment, the extracted features of the
known data 405 are compared 470 to the extracted features
of the test signal for purposes of identification.

For example, in a tested embodiment of the feature
extractor, when a stream of audio is to be identified, that
stream of audio is provided as the test signal 400 while a set
of known audio objects, such as, for example, particular
songs, is provided as the known data 405. Both the test
signal 400 and the known data are passed through the feature
extractor for extracting features as described above. A com-
parison 470 between the features of the test signal 400 and
the features of the known data then serves to identify
particular songs in the test signal in accordance with the
preceding discussion. Note also that in one embodiment,
features extracted from the test signal 400 are compared 470
against other features extracted from the test signal in order
to identify or locate repeat instances of objects embedded in
the signal, or repeat instances of particular portions or
segments of the test signal. In a tested embodiment, com-
parison 470 is performed by computing a Euclidean distance
between the feature of the test signal 400 and the features of
the known data. If the Euclidean distance is less than a
pre-determined threshold, the test signal is identified as
being the same as the known data.

Finally, in another embodiment, once the final projections
are computed 420 and optionally normalized 430, a deter-
mination is made 480 as to whether more test signals, or
windows of a continuous or semi-continuous signal are to be
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processed. If so, then the processes described above are
repeated for each test signal 400, or each window or segment
of the test signal 400.

3.4 Non-Linear DDA Layers

As noted above, in one embodiment, DDA uses non-linear
layers for audio signal feature extraction. Such use of
non-linear layers serves to further reduce potential false
positive and false negative rates in an audio identification or
fingerprinting system using DDA derived audio features. For
example, a non-linearity can be applied to each output of the
first OPCA layer. The training data for the second layer must
be passed through the identical non-linearity before training.
An example of such a non-linearity would be a hyperbolic
tangent (tanh) or a sigmoidal non-linearity, as is well known
to those skilled in the art.

Another example of a non-linear layer is the use of an
empirical kernel map on the output of the first OPCA layer.
In such an empirical kernel map, a subset of the training set
is first chosen. The output of the first OPCA layer for this
subset is then computed. The empirical kernel map takes the
output of the first OPCA layer for an arbitrary input and
computes a kernel (distance or similarity) function between
the OPCA output for the arbitrary input and the OPCA
output for each member of the training subset. This map thus
results in a vector whose length is equal to the size of the
training subset. This vector is then presented to the second
layer for temporal (or spatial) aggregation and subsequent
OPCA processing. It should be noted that any of these
non-linearities can be applied to the output of any of the
OPCA layers in a DDA process.

3.5 Preprocessing

As noted above, in one embodiment, prior knowledge of
distortions and noise in the signal are used to design a
pre-processor to DDA. This preprocessor then uses any of a
number of conventional techniques to remove those distor-
tions or noise that can be removed using conventional
algorithms. For example, if equalization is a known distor-
tion of an audio signal, then de-equalization is performed by
this embodiment. Similarly, given an image input, if contrast
and brightness variations are known distortions of the signal,
then histogram equalization is performed by this embodi-
ment.

For example, in a tested embodiment of the feature
extractor using audio data, as described above, both the
training audio data, any test signal audio data, and any
known audio data, (300, 400 and 405, respectively in FIG.
3 and FIG. 4) are first preprocessed to convert a stereo, or
other multi-channel, audio signal to a mono audio signal.
The mono audio signal is then down-sampled to 11.025
KHz. As noted above, this step is optional, and only serves
to reduce computational complexity. It has been observed
that overall system performance is not substantially nega-
tively impacted by reducing the audio data in this manner.

The audio signal is then split into fixed-length frames
which overlap by half. The size of the frames can be any
length desired. However, in the tested embodiment of the
feature extractor, window frame lengths ranging from 23.2
ms to 372 ms were observed to produce acceptable results.
A modulated complex lapped transform (MCLT) is then
applied to each frame. The MCLT is known in the art as a
transformation of an audio signal into a time-frequency
representation. Note that in alternate embodiments, other
transforms, such as an FFT using any of a number of
conventional windows, i.e., Hanning, Hamming, etc, can be
used in place of the MCLT. Applying an FFT to windowed
subsets of the audio signal also performs a transformation
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into a time-frequency representation. A log spectrum of the
transform coeflicients is then generated by taking the log
modulus of each MCLT, or other transform, coefficient.

In a tested embodiment of the feature extractor, as applied
to an audio signal, before applying DDA, the feature extrac-
tor described herein performs two additional pre-processing
steps that suppress specific easy-to-identify distortions. The
first preprocessing step removes distortion caused by fre-
quency equalization and volume adjustment. This “de-
equalization” step applies a high-pass filter (in frequency) to
the log spectrum, which results in a flatter spectrum. The
high-pass is performed by taking the DCT of the log
spectrum, multiplying each DCT coeflicient by a weight
which ranges linearly from 0 for the first component to 1 for
the sixth and higher components, and then performing an
inverse DCT. Note that in alternate embodiments, the
weights can range from O to 1 over longer interval than the
first six components. In still further embodiments, the
weighting curve is not linear. Such alternate embodiments
allow the audio feature extractor to be better tailored to
specific types of audio data.

The second preprocessing step removes distortions in the
signal that cannot be heard by a human listener. For
example, as is well known to those skilled in the art of
human psychoacoustic hearing characteristics, not all
sounds, frequencies, or frequency bands can be perceived by
a human listener. Consequently, unperceived frequency
components within an audio clip can be removed without
adversely affecting the ability of the audio feature extractor
to produce features for audio identification that approximate
the ability of a human listener to differentiate between audio
clips. Given this background, this second preprocessing step
removes the distortions within the audio signal that can not
be heard by exponentiating the log spectrum from the first
step, then generating a frequency-dependent perceptual
threshold using a conventional perceptual thresholding algo-
rithm as described by H. S. Malvar in “Auditory masking in
audio compression.” In K. Greenebaum, editor, Audio Anec-
dotes. A. K. Peters Litd., 2001. The final preprocessed signal
is then the difference in dB between the log spectrum and the
log perceptual threshold, if that difference is positive, and
zero otherwise. Thus, imperceptible components of the
spectrum are set to zero. Note that the concepts described
herein with respect to signal preprocessing are also dis-
cussed in greater detail in a copending patent application
entitled “IMPROVED AUDIO WATERMARK DETEC-
TOR,” filed Dec. 8, 2000, and assigned Ser. No. 09/733,576,
the subject matter of which is hereby incorporated herein by
this reference.

4.0 Tested Embodiment

In a simple tested embodiment of the feature extractor, the
program modules described in Section 2 with reference to
FIG. 2A and FIG. 2B, in view of the detailed description of
DDA and the modified OPCA provided in Section 3, were
employed for extracting noise and distortion robust audio
features from an audio signal after training the feature
extractor using a representative set of audio training data.
This audio feature extractor was used to extract audio
features for use in an audio fingerprinting/identification
system termed “stream audio fingerprinting.”

For the stream audio fingerprinting system used for dem-
onstrating the efficacy of the audio feature extractor, the
training set of the DDA system comprises 20-second audio
segments, each chosen from the middle portion of 50
randomly chosen audio clips, giving a total of 16.7 minutes
of audio. For every training segment, seven conventional
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distortions of the audio were constructed: a 3/1 compressor
above 30 dB, a compander, a spline boost of the mid
frequency range, a spline notch filter, a ‘quick filter’ emu-
lating poor quality AM radio, and two non-linear amplitude
distortions. Note that as described above, any desired dis-
tortion, or combination of distortions and noise can be used
in training the audio feature extractor. In addition, the
20-second length of the training segments was chosen for
convenience. It should be appreciated by those skilled in the
art that either longer or shorter, or more or fewer, segments
may be used. However, note that as the length of the training
segment approaches zero, it becomes more difficult to
extract robust features from the training data.

This training data was then used in training the feature
extractor using a two layer DDA as described in detail
above. Next, a number of known songs were passed through
the feature extractor in the manner described above, for
generating a large set of known pre-computed traces.
Finally, a number of fixed-length segments of an incoming
audio stream were converted into low-dimensional traces
(vectors). These input traces were then compared against the
large set of stored, pre-computed traces, i.c., the extracted
audio features from the known data, where each stored trace
has previously been extracted from a particular audio seg-
ment (for example, a song). In addition, the input traces are
computed at repeated intervals or sliding windows, and
compared with the set pre-computed traces of known audio
objects. Note that the stored pre-computed traces are called
“fingerprints,” because they are used to uniquely identify
particular audio segments.

Further, as noted above, the feature extraction system
avoids potential aliasing problems in temporal or spatial
signals for the reasons described below. In particular, there
is no aliasing because there are no intermediate layers
having a reduced sampling rate. For example, as illustrated
by FIG. 5, in the tested embodiment of the feature extractor
as applied to audio data, 2048 MCLT log magnitudes are
projected to a 64 dimensional space, then 32 of the resulting
frames are concatenated to form another 2048 dimensional
vector, which is then projected using a second layer. Con-
sequently, both layers have the same effective sampling rate.
Thus, the issue of aliasing is avoided.

Finally, in this tested embodiment of the feature extractor,
for each projection, the mean projected value of the training
data, and the variance of the projected values of the (train-
ing-distorted) data, were used to normalize the projections
so that they are zero mean on the training set, and so that
they are unit variance on the noise. Further, in this tested
embodiment of the feature extractor, the numbers output
after applying the last layer are also normalized by comput-
ing scores on a validation set (which has no data in common
with the training set) such that the mean distance between
each training segment, and the segments in the validation
set, is one. However, when it is used to compute a projection,
the mean projection of the training data is first subtracted,
and the resulting number divided by the standard deviation
of the projections of the noise (which is the difference
between training vector and distorted training vector). The
result of this is that the projection of the training data has a
zero mean, and the projection of the distorted versions of the
training data has a unit variance. The purpose for such
normalization is so that the numbers generated from differ-
ent projections at a given layer can be meaningfully com-
bined. Note that other conventional normalization tech-
niques may also be applied in alternate embodiments.
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4.1 Additional Signal Fingerprinting Embodiment

As discussed above, the signal feature extractor is gen-
erally trained using two or more OPCA layers. However, in
the case of signal fingerprinting applications, the signal
feature extractor is also trained, in one embodiment, using a
single OPCA layer. The training of this single OPCA layer
is accomplished in the same manner as described above for
the first OPCA layer. Optional normalization is accom-
plished in the same manner as described above for the last
layer of a multi-layer OPCA structure. This single layer
signal feature extractor is then subsequently used to process
one or more signals for extracting features from those
signals. These extracted features are then compared for the
purpose of identifying such signals. For example, in a signal
fingerprinting system using the single-layer OPCA signal
feature extractor, at least one known signal is passed through
the signal feature extractor to generate a set of at least one
known feature. At least one unknown signal is then passed
through the signal feature extractor to generate a set of at
least one unknown feature. The known and unknown fea-
tures are then simply compared, in the manner described
above, in order to identify one or more of the unknown
signals.

The foregoing description of the invention has been
presented for the purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to
the precise form disclosed. Many modifications and varia-
tions are possible in light of the above teaching. It is
intended that the scope of the invention be limited not by this
detailed description, but rather by the claims appended
hereto.

What is claimed is:

1. A system for training a feature extractor for extracting
features from an input signal comprising:

receiving at least one training signal;

receiving at least one distorted copy of the at least one

training signal;

transforming each training signal and each distorted copy

of the at least one training signal into a suitable
representation for taking projections;
performing a multi-layer oriented principal component
analysis (OPCA) of the at least one transformed train-
ing signal and the at least one transformed distorted
copy of the at least one training signal to compute a set
of training projections for each layer; and

constructing a signal feature extractor from two or more
layers of said projections.

2. The system of claim 1 wherein performing a multi-
layer OPCA of the at least one transformed training signal
and the at least one transformed distorted copy of the
training signal to compute the set of training projections for
each layer comprises;

computing a first OPCA layer directly from the at least

one transformed training signal and the at least one
transformed distorted copy of the at least one training
signal; and

computing at least one subsequent OPCA layer from an

aggregate of the projections from an immediately pre-
ceding OPCA layer, beginning with an aggregate of the
training projections from the first OPCA layer.

3. The system of claim 1 further comprising pre-process-
ing the at least one training signal, and the at least one
distorted copy of the at least one training signal, to remove
known distortions from the at least one training signal and
the at least one distorted copy of the training signal.

4. The system of claim 1 further comprising normalizing
the training projections output by each OPCA layer.
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5. The system of claim 1 wherein the set of training
projections computed for each layer is populated by a
predetermined number of highest generalized eigenvalue
OPCA projections computed for each layer.

6. The system of claim 1 further comprising applying a
suitable normalization to each projection at each layer.

7. The system of claim 1 further comprising transforming
each input signal into a representation suitable for projec-
tion.

8. The system of claim 1 wherein the at least one training
signal and each distorted copy of the at least one training
signal comprise audio signals and wherein transforming
each training signal and each distorted copy of the at least
one training signal into a suitable representation for taking
projections comprises transforming the audio signals into a
time-frequency representation.

9. The system of claim 8 wherein transforming the audio
signals into a time-frequency representation comprises
applying Fourier transforms to windowed subsets of the
audio signals.

10. The system of claim 7 wherein said at least one input
signal comprises an audio signal and said transforming
comprises transforming the audio signal into a time-fre-
quency representation.

11. The system of claim 7 further comprising extracting at
least one feature from the at least one input signal by passing
at least one transformed input signal through each layer of
the feature extractor in the order in which the layers were
originally computed.

12. The system of claim 2 further comprising:

receiving at least one input signal and transforming each

input signal into a representation suitable for projec-
tion; and

passing at least one transformed input signal through each

layer of the feature extractor in the order in which the
layers were originally computed.

13. The system of claim 12 wherein passing the least one
transformed input signal through each layer of the feature
extractor comprises;

computing a first set of output projections by applying the

training projections of the first OPCA layer to the at
least one transformed input signal;

computing at least one subsequent set of output projec-

tions by applying the training projections of each layer
of the feature extractor to previous aggregate layers of
output projections, wherein each aggregate layer of
output projections is generated by collating output
projections from adjacent positions in a layer.

14. The system of claim 13 wherein a final set of output
projections produced by a last layer of the feature extractor
represents features extracted from the input signal.

15. The system of claim 14 wherein at least one of the
input signals represent a known data signal.

16. The system of claim 15 wherein at least one of the
input signals represents an unknown data signal.

17. The system of claim 16 further comprising comparing
the features extracted from the known data signal to the
features extracted from the unknown data signal, and
wherein one or more portions of the unknown data signal are
identified by the comparison of the extracted features.

18. The system of claim 1 wherein transforming each
training signal and each distorted copy of the training signal
into a representation suitable for projection is performed on
sequential frames of the training signal, and wherein per-
forming a multi-layer oriented principal component analysis
(OPCA) of the transformed training signal and the at least
one transformed distorted copy of the at least one training
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signal to compute a set of training projections for each layer
is performed on each sequential frame of the at least one
training signal.

19. The system of claim 7 wherein transforming each
input signal into a representation suitable for projection is
performed on sequential frames of the input signal, and
wherein extracting at least one feature from the at least one
input signal by passing at least one transformed input signal
through each layer of the feature extractor in the order in
which the layers were originally computed is performed on
each sequential frame of the input signal.

20. The system of claim 1 wherein the at least one training
signal and the input signal are of the same signal type, and
wherein the signal type represents any of audio signals,
images, and video data.

21. The system of claim 1 further comprising normalizing
the training projections for each layer by computing scores
on a validation signal such that a mean distance between
each training projection and projections computed for the
validation signal is one.

22. A method for training a feature extractor for extracting
features from an input signal comprising using a computing
device to:

divide at least one training signal into a set of adjacent

frames, each frame having a same size;

apply a first oriented principal component analysis

(OPCA) to the adjacent frames to produce a first set of
generalized eigenvectors for each frame;

choose a number N of highest value eigenvectors for each

frame;

project each frame along the eigenvectors computed for

each frame to produce a first set of N projections for
each frame;

aggregate the projections for adjacent frames to produce

at least one aggregate;

apply a second OPCA to each aggregate, with the second

OPCA producing a second set of generalized eigenvec-
tors for each aggregate frame;

choose N highest value elgenvectors produced by the

second OPCA for each aggregate frame;

project each aggregate frame along the eigenvectors com-

puted for the each aggregate frame to produce a second
set of N projections for each aggregate frame; and

train a feature extractor by assigning the first set of N

projections to a first feature extractor layer, and assign-
ing the second set of N projections to a second feature
extractor layer.

23. The method of claim 22 wherein the at least one
training signal is transformed prior to performing the OPCA.

24. The method of claim 22 further comprising normal-
izing the projections.

25. The method of claim 24 wherein normalizing the
projections comprises normalizing the projections for the
last layer by computing scores on a validation signal such
that a mean distance between each projection computed
from the at least one training signal and projections com-
puted for the validation signal is one.

26. The method of claim 22 further comprising:

computing at least one subsequent layer of projections by

aggregating a number of adjacent projections of an
immediately preceding layer, beginning with the sec-
ond set of projections to produce a subsequent aggre-
gate frame;

applying a subsequent OPCA to this aggregate, with the

OPCA outputting a new set of generalized eigenvec-
tors;
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choosing N highest value elgenvectors produced by the
subsequent OPCA for each subsequent aggregate
frame;

project each subsequent aggregate frame along the elgen-

vectors computed for the each subsequent aggregate
frame to produce a subsequent set of N projections for
each subsequent aggregate frame; and

further training the feature extractor by assigning each

new subsequent set of N projections to a subsequent
feature extractor layer.

27. A computer-readable medium having computer
executable instructions for extracting features from an input
signal, said computer executable instructions comprising:

applying a multi-layer oriented principal component

analysis (OPCA) to a set of at least one training signals
for producing a set of training projections for each
OPCA layer, wherein each subsequent layer of the
OPCA is performed on an aggregate of outputs from an
immediately preceding OPCA layer;

training a feature extractor by assigning the set of training

projections for each OPCA layer to a corresponding
layer of the feature extractor; and

extracting features from at least one input signal by

passing each input signal through each layer of the
feature extractor in the order in which the layers were
originally computed.

28. The computer-readable medium of claim 27 wherein
applying a multi-layer OPCA to the set of training signals for
producing a set of training projections for each OPCA layer
comprises:

computing a first OPCA layer by:

transforming each training signal;

computing generalized elgenvectors over the trans-
formed training signals,

projecting each training signal over a number of highest
value eigenvectors to produce a number of projec-
tions from the training signal; and

computing a second OPCA layer by:

collating a number of adjacent projections from the first
OPCA layer into an aggregate of projections,

computing generalized eigenvectors over the aggregate
of projections, and

projecting the aggregate of projections over a number
of highest value eigenvectors computed from the
projections to produce a number of projections from
the aggregate of projections.

29. The computer-readable medium of claim 28 further
comprising computing at least one additional OPCA layer by
applying an OPCA to an aggregate of the projections from
an immediately preceding OPCA layer, beginning with the
second OPCA layer.

30. A computer-implemented process for training an
audio signal feature extractor, comprising using a computing
device to:

receive an audio input comprising representative audio

data;

transform the audio input into a time-frequency represen-

tation;

compute generalized eigenvalues over the transformed

audio data;

compute at least one eigenvector corresponding to at least

one highest value elgenvalue and assign those elgen-
vectors to a first layer of an audio signal feature
extractor;
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collate a number of adjacent eigenvectors into an aggre-
gate;
compute generalized eigenvalues over the aggregate;

compute at least one eigenvector corresponding to at least
one highest value eigenvalue of the aggregate and
assign those eigenvectors to a second layer of the audio
feature extractor.

31. The computer-implemented process of claim 30 fur-
ther comprising extracting features from at least one first
audio signal by passing a time-frequency transformation of
the first audio signal through each layer of the audio feature
extractor.

32. The computer-implemented process of claim 30
wherein the audio input is distorted prior to transforming the
audio input into a time-frequency representation.

33. The computer-implemented process of claim 30
wherein at least one copy of the audio input is distorted prior
to transforming the audio data.

34. The computer-implemented process of claim 30
wherein at least one copy of the audio input is pre-processed
prior to transforming the audio input by combining any
multi-channel audio information into a single audio channel.

35. The computer-implemented process of claim 30
wherein the audio input is pre-processed prior to transform-
ing the audio input by downsampling the audio input.

36. The computer-implemented process of claim 30
wherein the audio input is pre-processed prior to transform-
ing the audio input by using a human psychoacoustic
masking model for removing audio frequency components
from the audio input which can not be heard by a typical
human listener.

37. The computer-implemented process of claim 30
wherein the audio input is randomly shifted forward and
backwards in time, Up to a predefined maximum time offset,
to provide at least one temporally misaligned copy of the
audio input, and wherein the feature extractor trained using
the time-shifted audio data is robust against temporal mis-
alignment.

38. The computer-implemented process of claim 30
wherein the audio input is transformed using a complex
modulated lapped transform to produce the transformed
audio data.

39. The computer-implemented process of claim 30
wherein the audio input is transformed using a windowed
FFT to produce the transformed audio data.

40. The computer-implemented process of claim 31
wherein the first audio signal represents a known audio
signal, and wherein each extracted audio feature is stored in
an exemplary feature database.

41. The computer-implemented process of claim 40 fur-
ther comprising extracting at least one second audio feature
from at least one second audio signal.

42. The computer-implemented process of claim 41 fur-
ther comprising comparing the audio features extracted from
the first audio signal to the audio features extracted from the
second audio signal.



